These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 20485734)
1. Theoretical predictions of a highly reactive non-heme Fe(IV)=O complex with a high-spin ground state. Cho KB; Shaik S; Nam W Chem Commun (Camb); 2010 Jul; 46(25):4511-3. PubMed ID: 20485734 [TBL] [Abstract][Full Text] [Related]
2. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
3. Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes. Hirao H; Kumar D; Que L; Shaik S J Am Chem Soc; 2006 Jul; 128(26):8590-606. PubMed ID: 16802826 [TBL] [Abstract][Full Text] [Related]
4. O2 activation in a dinuclear Fe(II)/EDTA complex: spin surface crossing as a route to highly reactive Fe(IV)oxo species. Belanzoni P; Bernasconi L; Baerends EJ J Phys Chem A; 2009 Oct; 113(43):11926-37. PubMed ID: 19848430 [TBL] [Abstract][Full Text] [Related]
5. A two-state reactivity rationale for counterintuitive axial ligand effects on the C-H activation reactivity of nonheme FeIV=O oxidants. Hirao H; Que L; Nam W; Shaik S Chemistry; 2008; 14(6):1740-56. PubMed ID: 18186094 [TBL] [Abstract][Full Text] [Related]
6. An abiotic analogue of the diiron(IV)oxo "diamond core" of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(II)/EDTA solutions: thermodynamics and electronic structure. Bernasconi L; Belanzoni P; Baerends EJ Phys Chem Chem Phys; 2011 Sep; 13(33):15272-82. PubMed ID: 21776512 [TBL] [Abstract][Full Text] [Related]
7. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes. Rosa A; Ricciardi G Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694 [TBL] [Abstract][Full Text] [Related]
8. Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme Fe(IV)O complexes. Cho KB; Wu X; Lee YM; Kwon YH; Shaik S; Nam W J Am Chem Soc; 2012 Dec; 134(50):20222-5. PubMed ID: 23205855 [TBL] [Abstract][Full Text] [Related]
9. Formation and characterization of two FeO3 isomers in solid argon. Gong Y; Zhou M J Phys Chem A; 2008 Oct; 112(43):10838-42. PubMed ID: 18828575 [TBL] [Abstract][Full Text] [Related]
10. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water. Surawatanawong P; Tye JW; Hall MB Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237 [TBL] [Abstract][Full Text] [Related]
11. Comparative insight into electronic properties and reactivities toward C-H bond activation by iron(IV)-nitrido, iron(IV)-oxo, and iron(IV)-sulfido complexes: a theoretical investigation. Tang H; Guan J; Liu H; Huang X Inorg Chem; 2013 Mar; 52(5):2684-96. PubMed ID: 23425218 [TBL] [Abstract][Full Text] [Related]
12. Comparison of electronic structures and light-induced excited spin state trapping between [Fe(2-picolylamine)(3)](2+) and its iron(III) analogue. Ando H; Nakao Y; Sato H; Sakaki S Dalton Trans; 2010 Feb; 39(7):1836-45. PubMed ID: 20449430 [TBL] [Abstract][Full Text] [Related]
13. A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB. Liu H; Llano J; Gauld JW J Phys Chem B; 2009 Apr; 113(14):4887-98. PubMed ID: 19338370 [TBL] [Abstract][Full Text] [Related]
14. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height. de Visser SP J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691 [TBL] [Abstract][Full Text] [Related]
15. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex. Wasser IM; Fry HC; Hoertz PG; Meyer GJ; Karlin KD Inorg Chem; 2004 Dec; 43(26):8272-81. PubMed ID: 15606173 [TBL] [Abstract][Full Text] [Related]
16. Electronic structure and spectroscopy of "superoxidized" iron centers in model systems: theoretical and experimental trends. Berry JF; DeBeer George S; Neese F Phys Chem Chem Phys; 2008 Aug; 10(30):4361-74. PubMed ID: 18654674 [TBL] [Abstract][Full Text] [Related]
17. Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution. Saha TK; Karmaker S; Tamagake K Luminescence; 2003; 18(5):259-67. PubMed ID: 14587077 [TBL] [Abstract][Full Text] [Related]
18. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes? de Visser SP J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538 [TBL] [Abstract][Full Text] [Related]
19. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry. Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572 [TBL] [Abstract][Full Text] [Related]
20. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III). Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]