BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20485772)

  • 1. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules.
    Corno M; Rimola A; Bolis V; Ugliengo P
    Phys Chem Chem Phys; 2010 Jun; 12(24):6309-29. PubMed ID: 20485772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    Phys Chem Chem Phys; 2009 Oct; 11(40):9005-7. PubMed ID: 19812818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio modeling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces.
    Rimola A; Corno M; Zicovich-Wilson CM; Ugliengo P
    J Am Chem Soc; 2008 Dec; 130(48):16181-3. PubMed ID: 18989958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface.
    Chen X; Wu T; Wang Q; Shen JW
    Biomaterials; 2008 May; 29(15):2423-32. PubMed ID: 18299149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces.
    Almora-Barrios N; Austen KF; de Leeuw NH
    Langmuir; 2009 May; 25(9):5018-25. PubMed ID: 19397352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the dominant molecular step orientations on hydroxyapatite (100) surfaces.
    Kwon KY; Wang E; Chang N; Lee SW
    Langmuir; 2009 Jul; 25(13):7205-8. PubMed ID: 19496551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces.
    Almora-Barrios N; de Leeuw NH
    Langmuir; 2010 Sep; 26(18):14535-42. PubMed ID: 20731400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does adsorption at hydroxyapatite surfaces induce peptide folding? Insights from large-scale B3LYP calculations.
    Rimola A; Aschi M; Orlando R; Ugliengo P
    J Am Chem Soc; 2012 Jul; 134(26):10899-910. PubMed ID: 22680347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite surface solubility and effect on cell adhesion.
    Bertazzo S; Zambuzzi WF; Campos DD; Ogeda TL; Ferreira CV; Bertran CA
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):177-84. PubMed ID: 20362420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of biomolecule-biomaterial interactions at surfaces and interfaces.
    Wang Q; Wang MH; Wang KF; Liu Y; Zhang HP; Lu X; Zhang XD
    Biomed Mater; 2015 Jun; 10(3):032001. PubMed ID: 26065541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable structural, thermodynamic, and spectroscopic properties of organic molecules adsorbed on silicon surfaces from computational modeling: the case of glycine@Si(100).
    Carnimeo I; Biczysko M; Bloino J; Barone V
    Phys Chem Chem Phys; 2011 Oct; 13(37):16713-27. PubMed ID: 21858336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel-derived bioglass as a compound of hydroxyapatite composites.
    Cholewa-Kowalska K; Kokoszka J; Laczka M; Niedźwiedzki L; Madej W; Osyczka AM
    Biomed Mater; 2009 Oct; 4(5):055007. PubMed ID: 19779249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles.
    Jack KS; Vizcarra TG; Trau M
    Langmuir; 2007 Nov; 23(24):12233-42. PubMed ID: 17963411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory.
    Xu Z; Yang Y; Wang Z; Mkhonto D; Shang C; Liu ZP; Cui Q; Sahai N
    J Comput Chem; 2014 Jan; 35(1):70-81. PubMed ID: 24272540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces.
    Zhou H; Wu T; Dong X; Wang Q; Shen J
    Biochem Biophys Res Commun; 2007 Sep; 361(1):91-6. PubMed ID: 17637458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale variation in surface charge of synthetic hydroxyapatite detected by chemically and spatially specific high-resolution force spectroscopy.
    Vandiver J; Dean D; Patel N; Bonfield W; Ortiz C
    Biomaterials; 2005 Jan; 26(3):271-83. PubMed ID: 15262469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study.
    Corno M; Busco C; Bolis V; Tosoni S; Ugliengo P
    Langmuir; 2009 Feb; 25(4):2188-98. PubMed ID: 19161264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy.
    Drobny GP; Long JR; Karlsson T; Shaw W; Popham J; Oyler N; Bower P; Stringer J; Gregory D; Mehta M; Stayton PS
    Annu Rev Phys Chem; 2003; 54():531-71. PubMed ID: 12709513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.
    Thein-Han WW; Shah J; Misra RD
    Acta Biomater; 2009 Sep; 5(7):2668-79. PubMed ID: 19435616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.