BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20485830)

  • 1. Efficient asymmetric organocatalytic formation of erythrose and threose under aqueous conditions.
    Burroughs L; Vale ME; Gilks JA; Forintos H; Hayes CJ; Clarke PA
    Chem Commun (Camb); 2010 Jul; 46(26):4776-8. PubMed ID: 20485830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric organocatalytic formation of protected and unprotected tetroses under potentially prebiotic conditions.
    Burroughs L; Clarke PA; Forintos H; Gilks JA; Hayes CJ; Vale ME; Wade W; Zbytniewski M
    Org Biomol Chem; 2012 Feb; 10(8):1565-70. PubMed ID: 22245755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc-proline catalyzed pathway for the formation of sugars.
    Kofoed J; Machuqueiro M; Reymond JL; Darbre T
    Chem Commun (Camb); 2004 Jul; (13):1540-1. PubMed ID: 15216370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebiotic amino acids as asymmetric catalysts.
    Pizzarello S; Weber AL
    Science; 2004 Feb; 303(5661):1151. PubMed ID: 14976304
    [No Abstract]   [Full Text] [Related]  

  • 5. Computational study of mutarotation in erythrose and threose.
    Alkorta I; Popelier PL
    Carbohydr Res; 2011 Dec; 346(18):2933-9. PubMed ID: 22063503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution.
    Weber AL; Pizzarello S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12713-7. PubMed ID: 16905650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diastereoselective synthesis of piperidine imino sugars using aldol additions of metalated bislactim ethers to threose and erythrose acetonides.
    Ruiz M; Ruanova TM; Blanco O; Núñez F; Pato C; Ojea V
    J Org Chem; 2008 Mar; 73(6):2240-55. PubMed ID: 18302413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of the mutarotation of erythrose and threose: acid catalysis.
    Azofra LM; Alkorta I; Elguero J
    Carbohydr Res; 2013 May; 372():1-8. PubMed ID: 23501397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of α-L-threose nucleoside phosphonates via regioselective sugar protection.
    Dumbre SG; Jang MY; Herdewijn P
    J Org Chem; 2013 Jul; 78(14):7137-44. PubMed ID: 23822647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beneficial effect of internal hydrogen bonding interactions on the beta-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively.
    Hernandez-García L; Quintero L; Sánchez M; Sartillo-Piscil F
    J Org Chem; 2007 Oct; 72(22):8196-201. PubMed ID: 17900138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydropyridine C-glycoconjugates by organocatalytic Hantzsch cyclocondensation. Stereoselective synthesis of alpha-threofuranose C-nucleoside enantiomers.
    Ducatti DR; Massi A; Noseda MD; Duarte ME; Dondoni A
    Org Biomol Chem; 2009 May; 7(9):1980-6. PubMed ID: 19590795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational study of the open-chain and furanose structures of D-erythrose and D-threose.
    Azofra LM; Alkorta I; Elguero J; Popelier PL
    Carbohydr Res; 2012 Sep; 358():96-105. PubMed ID: 22841585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proline-beta(3)-amino-ester dipeptides as efficient catalysts for enantioselective direct aldol reaction in aqueous medium.
    De Nisco M; Pedatella S; Ullah H; Zaidi JH; Naviglio D; Ozdamar O; Caputo R
    J Org Chem; 2009 Dec; 74(24):9562-5. PubMed ID: 19938836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions.
    Breslow R; Cheng ZL
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5723-5. PubMed ID: 20231487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Densely Substituted L-Proline Esters as Catalysts for Asymmetric Michael Additions of Ketones to Nitroalkenes.
    Ruiz-Olalla A; Retamosa Mde G; Cossío FP
    J Org Chem; 2015 Jun; 80(11):5588-99. PubMed ID: 25974363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organocatalysts Derived from Unnatural α-Amino Acids: Scope and Applications.
    Agirre M; Arrieta A; Arrastia I; Cossío FP
    Chem Asian J; 2019 Jan; 14(1):44-66. PubMed ID: 30300971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organocatalytic asymmetric decarboxylative cyanomethylation of isatins using L-proline derived bifunctional thiourea.
    Pratap Reddy Gajulapalli V; Vinayagam P; Kesavan V
    Org Biomol Chem; 2014 Jun; 12(24):4186-91. PubMed ID: 24824863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation, purification and characterization of histidino-threosidine, a novel Maillard reaction protein crosslink from threose, lysine and histidine.
    Dai Z; Nemet I; Shen W; Monnier VM
    Arch Biochem Biophys; 2007 Jul; 463(1):78-88. PubMed ID: 17466255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small peptides catalyze highly enantioselective direct aldol reactions of aldehydes with hydroxyacetone: unprecedented regiocontrol in aqueous media.
    Tang Z; Yang ZH; Cun LF; Gong LZ; Mi AQ; Jiang YZ
    Org Lett; 2004 Jun; 6(13):2285-7. PubMed ID: 15200341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythrose and Threose: Carbonyl Migrations, Epimerizations, Aldol, and Oxidative Fragmentation Reactions under Plausible Prebiotic Conditions.
    Yi R; Kern R; Pollet P; Lin H; Krishnamurthy R; Liotta CL
    Chemistry; 2023 Feb; 29(8):e202202816. PubMed ID: 36367459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.