These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1065 related articles for article (PubMed ID: 20486766)

  • 1. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M; Xiong Y
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1.
    Lo SC; Hannink M
    Mol Cell Biol; 2006 Feb; 26(4):1235-44. PubMed ID: 16449638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62.
    Lau A; Wang XJ; Zhao F; Villeneuve NF; Wu T; Jiang T; Sun Z; White E; Zhang DD
    Mol Cell Biol; 2010 Jul; 30(13):3275-85. PubMed ID: 20421418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique pattern of component gene disruption in the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian cancer.
    Martinez VD; Vucic EA; Thu KL; Pikor LA; Hubaux R; Lam WL
    Biomed Res Int; 2014; 2014():159459. PubMed ID: 25114896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases.
    Wang P; Song J; Ye D
    Adv Exp Med Biol; 2020; 1217():211-223. PubMed ID: 31898230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications.
    Keum YS
    Ann N Y Acad Sci; 2011 Jul; 1229():184-9. PubMed ID: 21793854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex.
    Tao S; Liu P; Luo G; Rojo de la Vega M; Chen H; Wu T; Tillotson J; Chapman E; Zhang DD
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28115426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction.
    Nguyen HC; Wang W; Xiong Y
    Subcell Biochem; 2017; 83():323-347. PubMed ID: 28271482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. USP15 negatively regulates Nrf2 through deubiquitination of Keap1.
    Villeneuve NF; Tian W; Wu T; Sun Z; Lau A; Chapman E; Fang D; Zhang DD
    Mol Cell; 2013 Jul; 51(1):68-79. PubMed ID: 23727018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequent concerted genetic mechanisms disrupt multiple components of the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in thyroid cancer.
    Martinez VD; Vucic EA; Pikor LA; Thu KL; Hubaux R; Lam WL
    Mol Cancer; 2013 Oct; 12(1):124. PubMed ID: 24138990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant-induced INrf2 (Keap1) tyrosine 85 phosphorylation controls the nuclear export and degradation of the INrf2-Cul3-Rbx1 complex to allow normal Nrf2 activation and repression.
    Kaspar JW; Niture SK; Jaiswal AK
    J Cell Sci; 2012 Feb; 125(Pt 4):1027-38. PubMed ID: 22448038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.