These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 20486769)
21. Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Echigoya Y; Lim KRQ; Trieu N; Bao B; Miskew Nichols B; Vila MC; Novak JS; Hara Y; Lee J; Touznik A; Mamchaoui K; Aoki Y; Takeda S; Nagaraju K; Mouly V; Maruyama R; Duddy W; Yokota T Mol Ther; 2017 Nov; 25(11):2561-2572. PubMed ID: 28865998 [TBL] [Abstract][Full Text] [Related]
22. Exon skipping and duchenne muscular dystrophy therapy: selection of the most active U1 snRNA antisense able to induce dystrophin exon 51 skipping. Incitti T; De Angelis FG; Cazzella V; Sthandier O; PinnarĂ² C; Legnini I; Bozzoni I Mol Ther; 2010 Sep; 18(9):1675-82. PubMed ID: 20551908 [TBL] [Abstract][Full Text] [Related]
23. Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing. Aartsma-Rus A; Houlleberghs H; van Deutekom JC; van Ommen GJ; 't Hoen PA Oligonucleotides; 2010 Apr; 20(2):69-77. PubMed ID: 20377429 [TBL] [Abstract][Full Text] [Related]
24. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing. Takeshima Y; Yagi M; Matsuo M Methods Mol Biol; 2012; 867():131-41. PubMed ID: 22454059 [TBL] [Abstract][Full Text] [Related]
26. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse. Buvoli M; Buvoli A; Leinwand LA PLoS One; 2007 May; 2(5):e427. PubMed ID: 17487273 [TBL] [Abstract][Full Text] [Related]
27. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Echigoya Y; Yokota T Nucleic Acid Ther; 2014 Feb; 24(1):57-68. PubMed ID: 24380394 [TBL] [Abstract][Full Text] [Related]
28. Efficient Skipping of Single Exon Duplications in DMD Patient-Derived Cell Lines Using an Antisense Oligonucleotide Approach. Wein N; Vulin A; Findlay AR; Gumienny F; Huang N; Wilton SD; Flanigan KM J Neuromuscul Dis; 2017; 4(3):199-207. PubMed ID: 28869484 [TBL] [Abstract][Full Text] [Related]
29. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy. Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005 [TBL] [Abstract][Full Text] [Related]
30. Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Aartsma-Rus A; Bremmer-Bout M; Janson AA; den Dunnen JT; van Ommen GJ; van Deutekom JC Neuromuscul Disord; 2002 Oct; 12 Suppl 1():S71-7. PubMed ID: 12206800 [TBL] [Abstract][Full Text] [Related]
31. Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. McClorey G; Moulton HM; Iversen PL; Fletcher S; Wilton SD Gene Ther; 2006 Oct; 13(19):1373-81. PubMed ID: 16724091 [TBL] [Abstract][Full Text] [Related]
32. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. Aartsma-Rus A; Janson AA; van Ommen GJ; van Deutekom JC BMC Med Genet; 2007 Jul; 8():43. PubMed ID: 17612397 [TBL] [Abstract][Full Text] [Related]
33. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009 [TBL] [Abstract][Full Text] [Related]
34. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Aartsma-Rus A; Kaman WE; Weij R; den Dunnen JT; van Ommen GJ; van Deutekom JC Mol Ther; 2006 Sep; 14(3):401-7. PubMed ID: 16753346 [TBL] [Abstract][Full Text] [Related]
35. Exon 51 Skipping Quantification by Digital Droplet PCR in del52hDMD/mdx Mice. Hiller M; Spitali P; Datson N; Aartsma-Rus A Methods Mol Biol; 2018; 1828():249-262. PubMed ID: 30171546 [TBL] [Abstract][Full Text] [Related]
36. Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Chaouch S; Mouly V; Goyenvalle A; Vulin A; Mamchaoui K; Negroni E; Di Santo J; Butler-Browne G; Torrente Y; Garcia L; Furling D Hum Gene Ther; 2009 Jul; 20(7):784-90. PubMed ID: 19358679 [TBL] [Abstract][Full Text] [Related]
37. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733 [TBL] [Abstract][Full Text] [Related]
38. Contributions of Japanese patients to development of antisense therapy for DMD. Matsuo M; Takeshima Y; Nishio H Brain Dev; 2016 Jan; 38(1):4-9. PubMed ID: 26094594 [TBL] [Abstract][Full Text] [Related]
39. Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Arechavala-Gomeza V; Graham IR; Popplewell LJ; Adams AM; Aartsma-Rus A; Kinali M; Morgan JE; van Deutekom JC; Wilton SD; Dickson G; Muntoni F Hum Gene Ther; 2007 Sep; 18(9):798-810. PubMed ID: 17767400 [TBL] [Abstract][Full Text] [Related]
40. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. Shiga N; Takeshima Y; Sakamoto H; Inoue K; Yokota Y; Yokoyama M; Matsuo M J Clin Invest; 1997 Nov; 100(9):2204-10. PubMed ID: 9410897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]