These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20486797)

  • 41. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effect of pre-degeneration of peripheral nerves on plasticity of cultivated Schwann cells and their cell number in vitro].
    Fansa H; Keilhoff G; Frerichs O; Wolf G; Schneider W
    Handchir Mikrochir Plast Chir; 1999 Nov; 31(6):367-72. PubMed ID: 10637725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels.
    Bozkurt A; Deumens R; Beckmann C; Olde Damink L; Schügner F; Heschel I; Sellhaus B; Weis J; Jahnen-Dechent W; Brook GA; Pallua N
    Biomaterials; 2009 Jan; 30(2):169-79. PubMed ID: 18922575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue engineering of peripheral nerves: Epineurial grafts with application of cultured Schwann cells.
    Fansa H; Dodic T; Wolf G; Schneider W; Keilhoff G
    Microsurgery; 2003; 23(1):72-7. PubMed ID: 12616523
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts.
    Fansa H; Schneider W; Wolf G; Keilhoff G
    Muscle Nerve; 2002 Jul; 26(1):87-93. PubMed ID: 12115953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit.
    Kalbermatten DF; Kingham PJ; Mahay D; Mantovani C; Pettersson J; Raffoul W; Balcin H; Pierer G; Terenghi G
    J Plast Reconstr Aesthet Surg; 2008 Jun; 61(6):669-75. PubMed ID: 18218346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adipose-derived stem cells enhance peripheral nerve regeneration.
    di Summa PG; Kingham PJ; Raffoul W; Wiberg M; Terenghi G; Kalbermatten DF
    J Plast Reconstr Aesthet Surg; 2010 Sep; 63(9):1544-52. PubMed ID: 19828391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair.
    Liu BS
    J Biomed Mater Res A; 2008 Dec; 87(4):1092-102. PubMed ID: 18428983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast and efficient screening system for new biomaterials in tissue engineering: a model for peripheral nerve regeneration.
    Bruns S; Stark Y; Wieland M; Stahl F; Kasper C; Scheper T
    J Biomed Mater Res A; 2007 Jun; 81(3):736-47. PubMed ID: 17226811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A laminin graft replaces neurorrhaphy in the restorative surgery of the rat sciatic nerve.
    Kauppila T; Jyväsjärvi E; Huopaniemi T; Hujanen E; Liesi P
    Exp Neurol; 1993 Oct; 123(2):181-91. PubMed ID: 8405284
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits.
    Belkas JS; Munro CA; Shoichet MS; Johnston M; Midha R
    Biomaterials; 2005 May; 26(14):1741-9. PubMed ID: 15576148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioartificial reconstruction of peripheral nerves using the rat median nerve model.
    Sinis N; Kraus A; Drakotos D; Doser M; Schlosshauer B; Müller HW; Skouras E; Bruck JC; Werdin F
    Ann Anat; 2011 Jul; 193(4):341-6. PubMed ID: 21489766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of substrate stiffness on the behavior and functions of Schwann cells in culture.
    Gu Y; Ji Y; Zhao Y; Liu Y; Ding F; Gu X; Yang Y
    Biomaterials; 2012 Oct; 33(28):6672-81. PubMed ID: 22738780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in natural biomaterials for nerve tissue repair.
    Khaing ZZ; Schmidt CE
    Neurosci Lett; 2012 Jun; 519(2):103-14. PubMed ID: 22366403
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction.
    Keilhoff G; Stang F; Wolf G; Fansa H
    Biomaterials; 2003 Jul; 24(16):2779-87. PubMed ID: 12711525
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.
    Zhang R; Loers G; Schachner M; Boelens R; Wienk H; Siebert S; Eckert T; Kraan S; Rojas-Macias MA; Lütteke T; Galuska SP; Scheidig A; Petridis AK; Liang S; Billeter M; Schauer R; Steinmeyer J; Schröder JM; Siebert HC
    ChemMedChem; 2016 May; 11(9):990-1002. PubMed ID: 27136597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The fundamental role of subcellular topography in peripheral nerve repair therapies.
    Spivey EC; Khaing ZZ; Shear JB; Schmidt CE
    Biomaterials; 2012 Jun; 33(17):4264-76. PubMed ID: 22425024
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps.
    Kim YT; Haftel VK; Kumar S; Bellamkonda RV
    Biomaterials; 2008 Jul; 29(21):3117-27. PubMed ID: 18448163
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disialic, oligosialic and polysialic acids: distribution, functions and related disease.
    Sato C; Kitajima K
    J Biochem; 2013 Aug; 154(2):115-36. PubMed ID: 23788662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Decellularisation and histological characterisation of porcine peripheral nerves.
    Zilic L; Wilshaw SP; Haycock JW
    Biotechnol Bioeng; 2016 Sep; 113(9):2041-53. PubMed ID: 26926914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.