These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Long noncoding RNA TUSC7 inhibits cell proliferation, migration and invasion by regulating SOCS4 (SOCS5) expression through targeting miR-616 in endometrial carcinoma. Wu X; Cai D; Zhang F; Li M; Wan Q Life Sci; 2019 Aug; 231():116549. PubMed ID: 31200002 [TBL] [Abstract][Full Text] [Related]
23. Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: a morphologic study. Huang BQ; Chen XM; LaRusso NF J Parasitol; 2004 Apr; 90(2):212-21. PubMed ID: 15165040 [TBL] [Abstract][Full Text] [Related]
24. miR-221 suppresses ICAM-1 translation and regulates interferon-gamma-induced ICAM-1 expression in human cholangiocytes. Hu G; Gong AY; Liu J; Zhou R; Deng C; Chen XM Am J Physiol Gastrointest Liver Physiol; 2010 Apr; 298(4):G542-50. PubMed ID: 20110463 [TBL] [Abstract][Full Text] [Related]
25. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells. Yang Z; Fu Y; Gong P; Zheng J; Liu L; Yu Y; Li J; Li H; Yang J; Zhang X Microb Pathog; 2015 Aug; 85():29-34. PubMed ID: 26048276 [TBL] [Abstract][Full Text] [Related]
26. Cryptosporidium parvum regulation of human epithelial cell gene expression. Deng M; Lancto CA; Abrahamsen MS Int J Parasitol; 2004 Jan; 34(1):73-82. PubMed ID: 14711592 [TBL] [Abstract][Full Text] [Related]
27. MiR-4521 affects the propagation of Cryptosporidium parvum in HCT-8 cells through targeting foxm1 by regulating cell apoptosis. Yao Q; Fan YY; Huang S; Hu GR; Song JK; Yang X; Zhao GH Acta Trop; 2024 Jan; 249():107057. PubMed ID: 37913972 [TBL] [Abstract][Full Text] [Related]
28. MiR-942-5p targeting the IFI27 gene regulates HCT-8 cell apoptosis via a TRAIL-dependent pathway during the early phase of Cryptosporidium parvum infection. Xie F; Zhang Y; Li J; Sun L; Zhang L; Qi M; Zhang S; Jian F; Li X; Li J; Ning C; Wang R Parasit Vectors; 2022 Aug; 15(1):291. PubMed ID: 35974384 [TBL] [Abstract][Full Text] [Related]
29. Attenuation of Intestinal Epithelial Cell Migration During Cryptosporidium parvum Infection Involves Parasite Cdg7_FLc_1030 RNA-Mediated Induction and Release of Dickkopf-1. Ming Z; Wang Y; Gong AY; Zhang XT; Li M; Chen T; Mathy NW; Strauss-Soukup JK; Chen XM J Infect Dis; 2018 Sep; 218(8):1336-1347. PubMed ID: 30052999 [TBL] [Abstract][Full Text] [Related]
31. MicroRNA-106a-3p Induces Apatinib Resistance and Activates Janus-Activated Kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) by Targeting the SOCS System in Gastric Cancer. Guo W; Li W; Yuan L; Mei X; Hu W Med Sci Monit; 2019 Dec; 25():10122-10128. PubMed ID: 31884511 [TBL] [Abstract][Full Text] [Related]
32. Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization. O'Hara SP; Gajdos GB; Trussoni CE; Splinter PL; LaRusso NF Infect Immun; 2010 Jul; 78(7):2927-36. PubMed ID: 20457792 [TBL] [Abstract][Full Text] [Related]
33. Distribution of Cryptosporidium parvum sporozoite apical organelles during attachment to and internalization by cultured biliary epithelial cells. O'Hara SP; Huang BQ; Chen XM; Nelson J; LaRusso NF J Parasitol; 2005 Oct; 91(5):995-9. PubMed ID: 16419739 [TBL] [Abstract][Full Text] [Related]
34. Nuclear delivery of parasite Cdg2_FLc_0220 RNA transcript to epithelial cells during Cryptosporidium parvum infection modulates host gene transcription. Zhao GH; Gong AY; Wang Y; Zhang XT; Li M; Mathy NW; Chen XM Vet Parasitol; 2018 Feb; 251():27-33. PubMed ID: 29426472 [TBL] [Abstract][Full Text] [Related]
35. Exosome-mediated miR-9-5p promotes proliferation and migration of renal cancer cells both in vitro and in vivo by targeting SOCS4. Song W; Chen Y; Zhu G; Xie H; Yang Z; Li L Biochem Biophys Res Commun; 2020 Sep; 529(4):1216-1224. PubMed ID: 32819588 [TBL] [Abstract][Full Text] [Related]
36. Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells. Liu J; Deng M; Lancto CA; Abrahamsen MS; Rutherford MS; Enomoto S Infect Immun; 2009 Feb; 77(2):837-49. PubMed ID: 19075026 [TBL] [Abstract][Full Text] [Related]
37. MicroRNA expression profile of HCT-8 cells in the early phase of Cryptosporidium parvum infection. Wang C; Liu L; Zhu H; Zhang L; Wang R; Zhang Z; Huang J; Zhang S; Jian F; Ning C; Zhang L BMC Genomics; 2019 Jan; 20(1):37. PubMed ID: 30642246 [TBL] [Abstract][Full Text] [Related]
38. Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling. Zhang G; Zhang Y; Niu Z; Wang C; Xie F; Li J; Zhang S; Qi M; Jian F; Ning C; Zhang L; Wang R Parasit Vectors; 2020 Aug; 13(1):435. PubMed ID: 32867835 [TBL] [Abstract][Full Text] [Related]
39. Delivery of Parasite RNA Transcripts Into Infected Epithelial Cells During Cryptosporidium Infection and Its Potential Impact on Host Gene Transcription. Wang Y; Gong AY; Ma S; Chen X; Li Y; Su CJ; Norall D; Chen J; Strauss-Soukup JK; Chen XM J Infect Dis; 2017 Feb; 215(4):636-643. PubMed ID: 28007919 [TBL] [Abstract][Full Text] [Related]
40. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5. Sharma N; Kumawat KL; Rastogi M; Basu A; Singh SK Sci Rep; 2016 Jun; 6():27685. PubMed ID: 27282499 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]