These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 20486933)
1. Identification and characterization of novel Nrf2 inducers designed to target the intervening region of Keap1. Wu JH; Miao W; Hu LG; Batist G Chem Biol Drug Des; 2010 May; 75(5):475-80. PubMed ID: 20486933 [TBL] [Abstract][Full Text] [Related]
2. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. Lo SC; Li X; Henzl MT; Beamer LJ; Hannink M EMBO J; 2006 Aug; 25(15):3605-17. PubMed ID: 16888629 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Taguchi K; Motohashi H; Yamamoto M Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164 [TBL] [Abstract][Full Text] [Related]
4. Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress. Djordjevic J; Djordjevic A; Adzic M; Mitic M; Lukic I; Radojcic MB Brain Res; 2015 Mar; 1602():20-31. PubMed ID: 25598205 [TBL] [Abstract][Full Text] [Related]
5. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Itoh K; Mimura J; Yamamoto M Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768 [TBL] [Abstract][Full Text] [Related]
6. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound. Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152 [TBL] [Abstract][Full Text] [Related]
7. Fuzzy complex formation between the intrinsically disordered prothymosin α and the Kelch domain of Keap1 involved in the oxidative stress response. Khan H; Cino EA; Brickenden A; Fan J; Yang D; Choy WY J Mol Biol; 2013 Mar; 425(6):1011-27. PubMed ID: 23318954 [TBL] [Abstract][Full Text] [Related]
8. Structural and Dynamic Characterization of Mutated Keap1 for Varied Affinity toward Nrf2: A Molecular Dynamics Simulation Study. Cheng IC; Chen YJ; Ku CW; Huang YW; Yang CN J Chem Inf Model; 2015 Oct; 55(10):2178-86. PubMed ID: 26348991 [TBL] [Abstract][Full Text] [Related]
9. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Zhang DD; Hannink M Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973 [TBL] [Abstract][Full Text] [Related]
10. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Eggler AL; Small E; Hannink M; Mesecar AD Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739 [TBL] [Abstract][Full Text] [Related]
11. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. Jiang ZY; Lu MC; Xu LL; Yang TT; Xi MY; Xu XL; Guo XK; Zhang XJ; You QD; Sun HP J Med Chem; 2014 Mar; 57(6):2736-45. PubMed ID: 24512214 [TBL] [Abstract][Full Text] [Related]
12. Molecular effects of cancer-associated somatic mutations on the structural and target recognition properties of Keap1. Khan H; Killoran RC; Brickenden A; Fan J; Yang D; Choy WY Biochem J; 2015 Apr; 467(1):141-51. PubMed ID: 25582950 [TBL] [Abstract][Full Text] [Related]
13. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Yu M; Li H; Liu Q; Liu F; Tang L; Li C; Yuan Y; Zhan Y; Xu W; Li W; Chen H; Ge C; Wang J; Yang X Cell Signal; 2011 May; 23(5):883-92. PubMed ID: 21262351 [TBL] [Abstract][Full Text] [Related]
14. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Sun Z; Zhang S; Chan JY; Zhang DD Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1. Unni S; Deshmukh P; Krishnappa G; Kommu P; Padmanabhan B FEBS J; 2021 Mar; 288(5):1599-1613. PubMed ID: 32672401 [TBL] [Abstract][Full Text] [Related]
16. Structural basis of Keap1 interactions with Nrf2. Canning P; Sorrell FJ; Bullock AN Free Radic Biol Med; 2015 Nov; 88(Pt B):101-107. PubMed ID: 26057936 [TBL] [Abstract][Full Text] [Related]
17. Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum. Zhang Y; Crouch DH; Yamamoto M; Hayes JD Biochem J; 2006 Nov; 399(3):373-85. PubMed ID: 16872277 [TBL] [Abstract][Full Text] [Related]
18. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Ogura T; Tong KI; Mio K; Maruyama Y; Kurokawa H; Sato C; Yamamoto M Proc Natl Acad Sci U S A; 2010 Feb; 107(7):2842-7. PubMed ID: 20133743 [TBL] [Abstract][Full Text] [Related]
19. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Eggler AL; Liu G; Pezzuto JM; van Breemen RB; Mesecar AD Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10070-5. PubMed ID: 16006525 [TBL] [Abstract][Full Text] [Related]
20. Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Marcotte D; Zeng W; Hus JC; McKenzie A; Hession C; Jin P; Bergeron C; Lugovskoy A; Enyedy I; Cuervo H; Wang D; Atmanene C; Roecklin D; Vecchi M; Vivat V; Kraemer J; Winkler D; Hong V; Chao J; Lukashev M; Silvian L Bioorg Med Chem; 2013 Jul; 21(14):4011-9. PubMed ID: 23647822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]