These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2048732)

  • 1. Mn2+ transport across biological membranes may be monitored spectroscopically using the Ca2+ indicator dye antipyrylazo III.
    Gavin CE; Gunter KK; Gunter TE
    Anal Biochem; 1991 Jan; 192(1):44-8. PubMed ID: 2048732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antipyrylazo III, a "middle range" Ca2+ metallochromic indicator.
    Scarpa A; Brinley FJ; Dubyak G
    Biochemistry; 1978 Apr; 17(8):1378-86. PubMed ID: 646990
    [No Abstract]   [Full Text] [Related]  

  • 3. Stoichiometry of the reactions of calcium with the metallochromic indicator dyes antipyrylazo III and arsenazo III.
    RĂ­os E; Schneider MF
    Biophys J; 1981 Dec; 36(3):607-21. PubMed ID: 7326326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro calibration of the equilibrium reactions of the metallochromic indicator dye antipyrylazo III with calcium.
    Hollingworth S; Aldrich RW; Baylor SM
    Biophys J; 1987 Mar; 51(3):383-93. PubMed ID: 3567312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and mechanism of Ca2+ binding to arsenazo III and antipyrylazo III.
    Dorogi PL
    Biochim Biophys Acta; 1984 May; 799(1):9-19. PubMed ID: 6722180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain.
    Konji V; Montag A; Sandri G; Nordenbrand K; Ernster L
    Biochimie; 1985 Dec; 67(12):1241-50. PubMed ID: 4096906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of metallochromic dyes to measure changes in myoplasmic calcium during activity in frog skeletal muscle fibres.
    Baylor SM; Chandler WK; Marshall MW
    J Physiol; 1982 Oct; 331():139-77. PubMed ID: 6984070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrophotometric measurements of the kinetics of Ca2+ and Mn2+ accumulation in mitochondria.
    Mela L; Chance B
    Biochemistry; 1968 Nov; 7(11):4059-63. PubMed ID: 5722269
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of the characteristics of four metallochromic dyes as potential calcium indicators for biological experiments.
    Ogawa Y; Harafuji H; Kurebayashi N
    J Biochem; 1980 May; 87(5):1293-303. PubMed ID: 7390993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of metallochromic indicators with calcium sequestering organelles.
    Ohnishi ST
    Biochim Biophys Acta; 1979 Jun; 585(2):315-9. PubMed ID: 454685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of isotropic calcium signals from intact frog muscle fibers injected with Arsenazo III or Antipyrylazo III.
    Baylor SM; Quinta-Ferreira ME; Hui CS
    Biophys J; 1983 Oct; 44(1):107-12. PubMed ID: 6605161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrophotometric determination of reaction stoichiometry and equilibrium constants of metallochromic indicators. III. Antipyrylazo III complexing with Ca2+ and acetylcholine receptor protein.
    Dorogi PL; Moss K; Neumann E; Chang HW
    Biophys Chem; 1981 Oct; 14(2):91-100. PubMed ID: 7326343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internalization of metallochromic Ca2+ indicators in mammalian cells.
    Wiener E; Scarpa A
    Cell Calcium; 1985 Oct; 6(5):385-95. PubMed ID: 3935314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of the metallochromic dyes Arsenazo III, Antipyrylazo III and Azo1 in frog skeletal muscle fibres at rest.
    Baylor SM; Hollingworth S; Hui CS; Quinta-Ferreira ME
    J Physiol; 1986 Aug; 377():89-141. PubMed ID: 3491903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity.
    Gavin CE; Gunter KK; Gunter TE
    Biochem J; 1990 Mar; 266(2):329-34. PubMed ID: 2317189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved resolution of the initial fast phase of heavy sarcoplasmic reticulum Ca2+ uptake by Ca2+:antipyrylazo III dual-wavelength spectroscopy.
    Gilchrist JS; Katz S; Belcastro AN
    Biochem Biophys Res Commun; 1990 Apr; 168(1):364-71. PubMed ID: 2109610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myoplasmic calcium transients monitored with purpurate indicator dyes injected into intact frog skeletal muscle fibers.
    Konishi M; Baylor SM
    J Gen Physiol; 1991 Feb; 97(2):245-70. PubMed ID: 2016580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Diabetes and calcium transportation in liver mitochondria].
    Grinblat L; Stoppani AO
    Medicina (B Aires); 1989; 49(1):21-7. PubMed ID: 2630870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for more than one Ca2+ transport mechanism in mitochondria.
    Puskin JS; Gunter TE; Gunter KK; Russell PR
    Biochemistry; 1976 Aug; 15(17):3834-42. PubMed ID: 8094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alloxan and streptozotocin on calcium transport in isolated mouse liver mitochondria.
    Nelson L; Boquist L
    Cell Calcium; 1982 May; 3(2):191-8. PubMed ID: 6214312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.