BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20487548)

  • 1. Incorporating gene co-expression network in identification of cancer prognosis markers.
    Ma S; Shi M; Li Y; Yi D; Shia BC
    BMC Bioinformatics; 2010 May; 11():271. PubMed ID: 20487548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene network-based cancer prognosis analysis with sparse boosting.
    Ma S; Huang Y; Huang J; Fang K
    Genet Res (Camb); 2012 Aug; 94(4):205-21. PubMed ID: 22950901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta-analysis of Cancer Gene Profiling Data.
    Roy J; Winter C; Schroeder M
    Methods Mol Biol; 2016; 1381():211-22. PubMed ID: 26667463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Coexpression Network Analysis for Gene Expression Data.
    Liu BH
    Methods Mol Biol; 2018; 1754():155-165. PubMed ID: 29536442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer.
    Zhou Q; Ren J; Hou J; Wang G; Ju L; Xiao Y; Gong Y
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2383-2396. PubMed ID: 31280346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional genomics: improving cancer prognosis and drug development.
    Mariani SM
    MedGenMed; 2003 Mar; 5(1):18. PubMed ID: 12827079
    [No Abstract]   [Full Text] [Related]  

  • 8. Detection of gene pathways with predictive power for breast cancer prognosis.
    Ma S; Kosorok MR
    BMC Bioinformatics; 2010 Jan; 11():1. PubMed ID: 20043860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating network structure in integrative analysis of cancer prognosis data.
    Liu J; Huang J; Ma S
    Genet Epidemiol; 2013 Feb; 37(2):173-83. PubMed ID: 23161517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating higher-order representative features improves prediction in network-based cancer prognosis analysis.
    Ma S; Kosorok MR; Huang J; Dai Y
    BMC Med Genomics; 2011 Jan; 4():5. PubMed ID: 21226928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Hub Genes Using Co-Expression Network Analysis in Breast Cancer as a Tool to Predict Different Stages.
    Fu Y; Zhou QZ; Zhang XL; Wang ZZ; Wang P
    Med Sci Monit; 2019 Nov; 25():8873-8890. PubMed ID: 31758680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Integrative Approach for Identifying Network Biomarkers of Breast Cancer Subtypes Using Genomic, Interactomic, and Transcriptomic Data.
    Firoozbakht F; Rezaeian I; D'agnillo M; Porter L; Rueda L; Ngom A
    J Comput Biol; 2017 Aug; 24(8):756-766. PubMed ID: 28650678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole genome profiling and other high throughput technologies in lymphoid neoplasms--current contributions and future hopes.
    Campo E
    Mod Pathol; 2013 Jan; 26 Suppl 1():S97-S110. PubMed ID: 23281439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Repositioning through Systematic Mining of Gene Coexpression Networks in Cancer.
    Ivliev AE; 't Hoen PA; Borisevich D; Nikolsky Y; Sergeeva MG
    PLoS One; 2016; 11(11):e0165059. PubMed ID: 27824868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prognosis related genes in HER2+ breast cancer based on weighted gene co-expression network analysis.
    Weng Y; Jia R; Li Z; Liang W; Ji Y; Liang Y; Ning P
    Chin Med J (Engl); 2023 May; 136(10):1258-1260. PubMed ID: 37104618
    [No Abstract]   [Full Text] [Related]  

  • 18. Improved cancer biomarkers identification using network-constrained infinite latent feature selection.
    Cai L; Wu H; Zhou K
    PLoS One; 2021; 16(2):e0246668. PubMed ID: 33571282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.
    Guo L; Mao L; Lu W; Yang J
    Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative approach to characterize disease-specific pathways and their coordination: a case study in cancer.
    Xu M; Kao MC; Nunez-Iglesias J; Nevins JR; West M; Zhou XJ
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S12. PubMed ID: 18366601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.