These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20487726)

  • 1. Electrophysiological responses related to the pigment epithelium and its interaction with the receptor layer.
    Nilsson SE
    Neurochem Int; 1980; 1C():69-80. PubMed ID: 20487726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiology in pigment epithelial changes.
    Nilsson SE
    Acta Ophthalmol Suppl (1985); 1985; 173():22-7. PubMed ID: 3002094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal pigment epithelial dysfunction in human immunodeficiency virus-infected patients with cytomegalovirus retinitis.
    Harrison JM; van Heuven WA
    Ophthalmology; 1999 Apr; 106(4):790-7. PubMed ID: 10201604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization.
    Oakley B
    J Gen Physiol; 1977 Oct; 70(4):405-25. PubMed ID: 303279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the retina and the pigment epithelium in hereditary canine ceroid lipofuscinosis. IV. Changes in the electroretinogram and the standing potential of the eye.
    Nilsson SE; Armstrong D; Koppang N; Persson P; Milde K
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):77-84. PubMed ID: 6681808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vitro frog pigment epithelial cell hyperpolarization in response to light.
    Oakley B; Steinberg RH; Miller SS; Nilsson SE
    Invest Ophthalmol Vis Sci; 1977 Aug; 16(8):771-4. PubMed ID: 885686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cAMP and IBMX on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Nao-i N; Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):54-66. PubMed ID: 1688834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ba2+ unmasks K+ modulation of the Na+-K+ pump in the frog retinal pigment epithelium.
    Griff ER; Shirao Y; Steinberg RH
    J Gen Physiol; 1985 Dec; 86(6):853-76. PubMed ID: 2416871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photic damage to the eye: selective extinction of the c-wave of the electroretinogram.
    Skoog KO; Jarkman S
    Doc Ophthalmol; 1985 Oct; 61(1):49-53. PubMed ID: 4064890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraretinal analysis of the threshold dark-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1989 Jun; 61(6):1221-32. PubMed ID: 2746322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The c-wave of the electroretinogram in vitelliruptive macular degeneration (älvdalssjukan).
    Skoog KO; Nilsson SE
    Acta Ophthalmol (Copenh); 1981 Oct; 59(5):756-8. PubMed ID: 7315227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of negative potentials in the light-adapted ERG of cat retina.
    Frishman LJ; Steinberg RH
    J Neurophysiol; 1990 Jun; 63(6):1333-46. PubMed ID: 2358881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on acute and late stages of experimental central retinal artery occlusion in the Cynomolgus monkey. II. Influence on the cyclic changes in the amplitude of the c-wave of the ERG and in the standing potential of the eye.
    Textorius O; Skoog KO; Nilsson SE
    Acta Ophthalmol (Copenh); 1978; 56(4):665-76. PubMed ID: 104543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corneal D.C. recordings of slow ocular potential changes such as the ERG c-wave and the light peak in clinical work. Equipment and examples of results.
    Nilsson SE; Andersson BE
    Doc Ophthalmol; 1988; 68(3-4):313-25. PubMed ID: 3402320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram.
    Linsenmeier RA; Steinberg RH
    J Gen Physiol; 1984 Feb; 83(2):213-32. PubMed ID: 6716089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraretinal recordings of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak.
    Valeton JM; van Norren D
    Vision Res; 1982; 22(3):393-9. PubMed ID: 7090193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of Kir4.1 to the mouse electroretinogram.
    Wu J; Marmorstein AD; Kofuji P; Peachey NS
    Mol Vis; 2004 Sep; 10():650-4. PubMed ID: 15359216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dopamine on the chick retinal pigment epithelium. Membrane potentials and light-evoked responses.
    Gallemore RP; Steinberg RH
    Invest Ophthalmol Vis Sci; 1990 Jan; 31(1):67-80. PubMed ID: 2298543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ERG c-wave in vitelliruptive macular degeneration (VMD).
    Nilsson SE; Skoog KO
    Acta Ophthalmol (Copenh); 1980 Aug; 58(4):659-66. PubMed ID: 7211255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraretinal study of cat electroretinogram during retinal ischemia-reperfusion with extracellular K+ concentration microelectrodes.
    Hiroi K; Yamamoto F; Honda Y
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):656-63. PubMed ID: 8113017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.