These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 20487872)

  • 1. Evidence for a functional coupling between dopamine reuptake and tyrosine hydroxylation in striatal nerve terminals.
    Maura G; Raiteri M
    Neurochem Int; 1982; 4(4):225-31. PubMed ID: 20487872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine biosynthesis is regulated by the amine newly recaptured by dopaminergic nerve endings.
    Cerrito F; Raiteri M
    Eur J Pharmacol; 1980 Dec; 68(4):465-70. PubMed ID: 7202503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uptake and release of [3-H]-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthlane (ADTN) by striatal nerve terminals.
    Davis A; Roberts PJ; Woodruff GN
    Br J Pharmacol; 1978 May; 63(1):183-90. PubMed ID: 647158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal synaptosomal dopamine synthesis: evidence against direct regulation by an autoreceptor mechanism.
    Compton DR; Johnson KM
    Eur J Pharmacol; 1985 Apr; 110(2):157-62. PubMed ID: 2859213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic dopamine autoreceptors control tyrosine hydroxylase activation in depolarized striatal dopaminergic terminals.
    el Mestikawy S; Glowinski J; Hamon M
    J Neurochem; 1986 Jan; 46(1):12-22. PubMed ID: 2866232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of dopamine synthesis in the medial prefrontal cortex: studies in brain slices.
    Wolf ME; Galloway MP; Roth RH
    J Pharmacol Exp Ther; 1986 Mar; 236(3):699-707. PubMed ID: 2869140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that amphetamine and Na+ gradient reversal increase striatal synaptosomal dopamine synthesis through carrier-mediated efflux of dopamine.
    Connor CE; Kuczenski R
    Biochem Pharmacol; 1986 Sep; 35(18):3123-30. PubMed ID: 3092833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine transporter mediated release of dopamine: role of chloride.
    Sitges M; Reyes A; Chiu LM
    J Neurosci Res; 1994 Sep; 39(1):11-22. PubMed ID: 7807588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine.
    Feuerstein TJ; Hertting G; Lupp A; Neufang B
    Br J Pharmacol; 1986 Jul; 88(3):677-84. PubMed ID: 3742155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that [3H]dopamine is taken up and released from nondopaminergic nerve terminals in the rat substantia nigra in vitro.
    Kelly E; Jenner P; Marsden CD
    J Neurochem; 1985 Jul; 45(1):137-44. PubMed ID: 3923157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-3,4-dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamine oxidase A and B inhibitors.
    Wachtel SR; Abercrombie ED
    J Neurochem; 1994 Jul; 63(1):108-17. PubMed ID: 8207420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of dopamine from striatal synaptosomes.
    Raiteri M; Cerrito F; Cervoni AM; Del Carmine R; Ribera MT; Levi G
    Ann Ist Super Sanita; 1978; 14(1):97-110. PubMed ID: 227308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a similar compartmentation of recaptured and endogenously synthesized dopamine in striatal synaptosomes.
    Cerrito F; Casazza G; Levi G; Raiteri M
    Neurochem Res; 1980 Feb; 5(2):115-21. PubMed ID: 7366797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of KCNQ2 subunits in [3H]dopamine release triggered by depolarization and pre-synaptic muscarinic receptor activation from rat striatal synaptosomes.
    Martire M; D'Amico M; Panza E; Miceli F; Viggiano D; Lavergata F; Iannotti FA; Barrese V; Preziosi P; Annunziato L; Taglialatela M
    J Neurochem; 2007 Jul; 102(1):179-93. PubMed ID: 17437547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of presynaptic receptors in the release and synthesis of 3H-dopamine by slices of rat striatum.
    Westfall TC; Besson MJ; Giorguieff MF; Glowinski J
    Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(3):279-87. PubMed ID: 181686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a functional linkage between neurotransmitter uptake mechanisms and presynaptic receptors?
    Raiteri M; Bonanno G; Marchi M; Maura G
    J Pharmacol Exp Ther; 1984 Dec; 231(3):671-7. PubMed ID: 6150107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the synthesis and metabolism of striatal dopamine after disruption of nerve conduction in the medial forebrain bundle.
    Commissiong JW; Slimovitch C; Toffano G
    Br J Pharmacol; 1990 Apr; 99(4):741-9. PubMed ID: 2361171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different effects of serotonin (5-HT) uptake blockers in caudate nucleus and hippocampus of the rabbit: role of monoamine oxidase in dopaminergic terminals.
    Lupp A; Bär KI; Lücking CH; Feuerstein TJ
    Psychopharmacology (Berl); 1992; 106(1):118-26. PubMed ID: 1738788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical evidence for the presence of presynaptic receptors on dopaminergic nerve terminals.
    De Belleroche J; Bradford HF
    Brain Res; 1978 Feb; 142(1):53-68. PubMed ID: 626919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of synaptosomal dopamine formed from tyrosine and L-DOPA.
    Bagchi SP; Bagchi P; Smith TM
    Brain Res; 1980 Apr; 187(2):403-14. PubMed ID: 7370738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.