These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20488090)

  • 1. Preferential release of newly synthesized [(3)H]GABA from striatal slices to preloaded [(3)H]GABA.
    Yoneda Y; Kanmori K; Takahashi M; Zuo PP; Paik IH; Kuriyama K
    Neurochem Int; 1984; 6(5):641-9. PubMed ID: 20488090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anesthetics affect the uptake but not the depolarization-evoked release of GABA in rat striatal synaptosomes.
    Mantz J; Lecharny JB; Laudenbach V; Henzel D; Peytavin G; Desmonts JM
    Anesthesiology; 1995 Feb; 82(2):502-11. PubMed ID: 7856908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress-induced enhancement of suppression of [3H]GABA release from striatal slices by presynaptic autoreceptor.
    Kuriyama K; Kanmori K; Taguchi J; Yoneda Y
    J Neurochem; 1984 Apr; 42(4):943-50. PubMed ID: 6321665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of monoamines from the striatum and hypothalamus: effect of -hydroxybutyrate.
    Bustos G; Roth RH
    Br J Pharmacol; 1972 Sep; 46(1):101-15. PubMed ID: 5084815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative allosteric modulators of AMPA-preferring receptors inhibit [(3)H]GABA release in rat striatum.
    Harsing LG; Csillik-Perczel V; Ling I; Sólyom S
    Neurochem Int; 2000 Jul; 37(1):33-45. PubMed ID: 10781843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of [3H]GABA release from striatal slices: evidence for a calcium-independent process via the GABA uptake system.
    Bernath S; Zigmond MJ
    Neuroscience; 1988 Nov; 27(2):563-70. PubMed ID: 3217004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices.
    Cunningham J; Neal MJ
    Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents.
    Campbell K; Kalén P; Wictorin K; Lundberg C; Mandel RJ; Björklund A
    Neuroscience; 1993 Mar; 53(2):403-15. PubMed ID: 8098510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of D-[3H]aspartic acid from the rat striatum. Effect of veratridine-evoked depolarization, fronto-parietal cortex ablation, and striatal lesions with kainic acid.
    Arqueros L; Abarca J; Bustos G
    Biochem Pharmacol; 1985 Apr; 34(8):1217-24. PubMed ID: 2581579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous release of endogenous aspartate and glutamate from rat striatal slices is increased following destruction of local neurons by ibotenic acid.
    Arnerić SP; Woo JI; Meeley MP; Reis DJ
    Neurochem Res; 1988 May; 13(5):423-8. PubMed ID: 2900479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. l-Glutamic acid, a neuromodulator of dopaminergic transmission in the rat corpus striatum.
    Rudolph MI; Arqueros L; Bustos G
    Neurochem Int; 1983; 5(4):479-86. PubMed ID: 20487976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of endogenous dopamine, 3,4-dihydroxyphenylacetic acid, and amino acid transmitters from rat striatal slices.
    Flint RS; Murphy JM; McBride WJ
    Neurochem Res; 1985 Apr; 10(4):515-27. PubMed ID: 2860579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of endogenous GABA can occur through Ca(2+)-dependent and Ca(2+)-independent processes.
    Bernath S; Keller RW; Zigmond MJ
    Neurochem Int; 1989; 14(4):439-45. PubMed ID: 20504447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The release of gamma-aminobutyric acid, glutamate, and acetylcholine from striatal slices: a mass fragmentographic study.
    Moroni F; Bianchi C; Tanganelli S; Moneti G; Beani L
    J Neurochem; 1981 May; 36(5):1691-9. PubMed ID: 6113268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools.
    Levi G; Gallo V
    J Neurochem; 1981 Jul; 37(1):22-31. PubMed ID: 6114134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous GABA release from rat striatal slices: effects of the GABAB receptor antagonist 2-hydroxy-saclofen.
    Mayfield RD; Zahniser NR
    Synapse; 1993 May; 14(1):16-23. PubMed ID: 8390105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+ influx through Ca2+ channels can promote striatal GABA efflux in Ca(2+)-deficient conditions in response to electrical field depolarization.
    Bernath S; Zigmond MJ; Nisenbaum ES; Vizi ES; Berger TW
    Brain Res; 1993 Dec; 632(1-2):232-8. PubMed ID: 8149231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo release of [3H]gamma-aminobutyric acid in the rat neostriatum--I. Characterization and topographical heterogeneity of the effects of dopaminergic and cholinergic agents.
    Girault JA; Spampinato U; Savaki HE; Glowinski J; Besson MJ
    Neuroscience; 1986 Dec; 19(4):1101-8. PubMed ID: 3493448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal electrical high frequency stimulation modulates presynaptic GABAergic physiology.
    Li T; Qadri F; Moser A
    Neurosci Lett; 2004 Nov; 371(2-3):117-21. PubMed ID: 15519740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alpha2C-adrenoceptor modulates GABA release in mouse striatum.
    Zhang W; Ordway GA
    Brain Res Mol Brain Res; 2003 Apr; 112(1-2):24-32. PubMed ID: 12670699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.