These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 20488251)

  • 1. Clostridium difficile survives minimal temperature recommended for cooking ground meats.
    Rodriguez-Palacios A; Reid-Smith RJ; Staempfli HR; Weese JS
    Anaerobe; 2010 Oct; 16(5):540-2. PubMed ID: 20488251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A possible route for foodborne transmission of Clostridium difficile?
    Lund BM; Peck MW
    Foodborne Pathog Dis; 2015 Mar; 12(3):177-82. PubMed ID: 25599421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clostridium difficile in raw products of animal origin.
    Jöbstl M; Heuberger S; Indra A; Nepf R; Köfer J; Wagner M
    Int J Food Microbiol; 2010 Mar; 138(1-2):172-5. PubMed ID: 20079946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal inactivation of Bacillus cereus and Clostridium perfringens vegetative cells and spores in pork luncheon roll.
    Byrne B; Dunne G; Bolton DJ
    Food Microbiol; 2006 Dec; 23(8):803-8. PubMed ID: 16943086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridium difficile in food--innocent bystander or serious threat?
    Weese JS
    Clin Microbiol Infect; 2010 Jan; 16(1):3-10. PubMed ID: 20002685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of radio frequency cooking in the reduction of Escherichia coli and shelf stability of ground beef.
    Guo Q; Piyasena P; Mittal GS; Si W; Gong J
    Food Microbiol; 2006 Apr; 23(2):112-8. PubMed ID: 16942994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures.
    Zhu S; Naim F; Marcotte M; Ramaswamy H; Shao Y
    Int J Food Microbiol; 2008 Aug; 126(1-2):86-92. PubMed ID: 18593644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium difficile in food and domestic animals: a new foodborne pathogen?
    Gould LH; Limbago B
    Clin Infect Dis; 2010 Sep; 51(5):577-82. PubMed ID: 20642351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of different cooking procedures on microbiological and chemical quality characteristics of Tekirdağ meatballs.
    Yilmaz I; Yetim H; Ockerman HW
    Nahrung; 2002 Aug; 46(4):276-8. PubMed ID: 12224424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium difficile: its potential as a source of foodborne disease.
    Rupnik M; Songer JG
    Adv Food Nutr Res; 2010; 60():53-66. PubMed ID: 20691953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study of the thermoresistance of Clostridium difficile spores].
    Meisel-Mikołajczyk F; Kaliszuk-Kamińska E; Martirosian G
    Med Dosw Mikrobiol; 1995; 47(3-4):177-81. PubMed ID: 8833929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New automated microwave heating process for cooking and pasteurization of microwaveable foods containing raw meats.
    Huang L; Sites J
    J Food Sci; 2010 Mar; 75(2):E110-5. PubMed ID: 20492230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time multiplex polymerase chain reaction assay for rapid detection of Clostridium difficile toxin-encoding strains.
    Houser BA; Hattel AL; Jayarao BM
    Foodborne Pathog Dis; 2010 Jun; 7(6):719-26. PubMed ID: 20113206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission of Clostridium difficile in foods.
    Hoover DG; Rodriguez-Palacios A
    Infect Dis Clin North Am; 2013 Sep; 27(3):675-85. PubMed ID: 24011836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile.
    Rodriguez-Palacios A; Lejeune JT
    Appl Environ Microbiol; 2011 May; 77(9):3085-91. PubMed ID: 21398481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling growth of Clostridium perfringens in pea soup during cooling.
    de Jong AE; Beumer RR; Zwietering MH
    Risk Anal; 2005 Feb; 25(1):61-73. PubMed ID: 15787757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of Clostridioides [Clostridium] difficile occurrence through the food chain.
    Candel-Pérez C; Ros-Berruezo G; Martínez-Graciá C
    Food Microbiol; 2019 Feb; 77():118-129. PubMed ID: 30297042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CLOSTRIDIUM PERFRINGENS IN MEAT AND MEAT PRODUCTS.
    HALL HE; ANGELOTTI R
    Appl Microbiol; 1965 May; 13(3):352-7. PubMed ID: 14325274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative study of thermoresistance spores of Clostridium difficile strains belonging to different toxigenicity groups].
    Wultańska D; Pituch H; Obuch-Woszczatyński P; Meisel-Mikołajczyk F; Luczak M
    Med Dosw Mikrobiol; 2004; 56(2):155-9. PubMed ID: 15544087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of modified atmosphere and temperature abuse on the growth from spores and cereulide production of Bacillus weihenstephanensis in a cooked chilled meat sausage.
    Thorsen L; Budde BB; Koch AG; Klingberg TD
    Int J Food Microbiol; 2009 Apr; 130(3):172-8. PubMed ID: 19230998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.