BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20488614)

  • 1. Optimum P levels for arsenic removal from contaminated groundwater by Pteris vittata L. of different ages.
    Santos JA; Gonzaga MI; Ma LQ
    J Hazard Mater; 2010 Aug; 180(1-3):662-7. PubMed ID: 20488614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages.
    Santos JA; Gonzaga MI; Ma LQ; Srivastava M
    Environ Pollut; 2008 Jul; 154(2):306-11. PubMed ID: 18045757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant algae method for arsenic removal from arsenic contaminated groundwater.
    de la Paix MJ; Lanhai L; de Dieu HJ; John MN
    Water Sci Technol; 2012; 65(5):927-31. PubMed ID: 22339029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L.
    Tu S; Ma LQ; Fayiga AO; Zillioux EJ
    Int J Phytoremediation; 2004; 6(1):35-47. PubMed ID: 15224774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water.
    Natarajan S; Stamps RH; Ma LQ; Saha UK; Hernandez D; Cai Y; Zillioux EJ
    J Hazard Mater; 2011 Jan; 185(2-3):983-9. PubMed ID: 21051137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytofiltration of arsenic-contaminated groundwater using Pteris vittata L.: effect of plant density and nitrogen and phosphorus levels.
    Natarajan S; Stamps RH; Saha UK; Ma LQ
    Int J Phytoremediation; 2008; 10(3):220-33. PubMed ID: 18710097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.
    Zhao J; Guo H; Ma J; Shen Z
    Int J Phytoremediation; 2015; 17(1-6):355-62. PubMed ID: 25409248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic hyperaccumulation by Pteris vittata and Pityrogramma calomelanos: a comparative study of uptake efficiency in arsenic-treated soils and waters.
    Yong JW; Tan SN; Ng YF; Low KK; Peh SF; Chua JC; Lim AA
    Water Sci Technol; 2010; 61(12):3041-9. PubMed ID: 20555200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
    Fayiga AO; Ma LQ; Cao X; Rathinasabapathi B
    Environ Pollut; 2004 Nov; 132(2):289-96. PubMed ID: 15312941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.
    Huang Y; Miyauchi K; Inoue C; Endo G
    Biosci Biotechnol Biochem; 2016; 80(3):614-8. PubMed ID: 26549187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.
    Wei S; Ma LQ; Saha U; Mathews S; Sundaram S; Rathinasabapathi B; Zhou Q
    Environ Pollut; 2010 May; 158(5):1530-5. PubMed ID: 20045235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L.
    Silva Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2006 Sep; 143(2):254-60. PubMed ID: 16442683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions.
    Srivastava M; Santos J; Srivastava P; Ma LQ
    Bioresour Technol; 2010 Apr; 101(8):2691-9. PubMed ID: 20044253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.
    Tu C; Ma LQ
    Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation.
    Liao XY; Chen TB; Xiao XY; Xie H; Yan XL; Zhai LM; Wu B
    Int J Phytoremediation; 2007; 9(4):269-80. PubMed ID: 18246706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.