These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 20488773)

  • 101. Open source software EuroForMix can be used to analyse complex SNP mixtures.
    Bleka Ø; Eduardoff M; Santos C; Phillips C; Parson W; Gill P
    Forensic Sci Int Genet; 2017 Nov; 31():105-110. PubMed ID: 28942111
    [TBL] [Abstract][Full Text] [Related]  

  • 102. An Investigation into Compound Likelihood Ratios for Forensic DNA Mixtures.
    Wivell R; Kelly H; Kokoszka J; Daniels J; Dickson L; Buckleton J; Bright JA
    Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36980986
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Notes on the maximum likelihood estimation of haplotype frequencies.
    Mano S; Yasuda N; Katoh T; Tounai K; Inoko H; Imanishi T; Tamiya G; Gojobori T
    Ann Hum Genet; 2004 May; 68(Pt 3):257-64. PubMed ID: 15180706
    [TBL] [Abstract][Full Text] [Related]  

  • 104. The effect of varying the number of contributors in the prosecution and alternate propositions.
    Buckleton JS; Bright JA; Cheng K; Kelly H; Taylor DA
    Forensic Sci Int Genet; 2019 Jan; 38():225-231. PubMed ID: 30466054
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Using simulated microhaplotype genotyping data to evaluate the value of machine learning algorithms for inferring DNA mixture contributor numbers.
    Wang H; Zhu Q; Huang Y; Cao Y; Hu Y; Wei Y; Wang Y; Hou T; Shan T; Dai X; Zhang X; Wang Y; Zhang J
    Forensic Sci Int Genet; 2024 Mar; 69():103008. PubMed ID: 38244524
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Evaluation of DNA mixtures involving two pairs of relatives.
    Hu YQ; Fung WK
    Int J Legal Med; 2005 Sep; 119(5):251-9. PubMed ID: 15711800
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Evaluating DNA Mixtures with Contributors from Different Populations Using Probabilistic Genotyping.
    Kruijver M; Kelly H; Bright JA; Buckleton J
    Genes (Basel); 2022 Dec; 14(1):. PubMed ID: 36672780
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Pedigree-based relationship inference from complex DNA mixtures.
    Dørum G; Kaur N; Gysi M
    Int J Legal Med; 2017 May; 131(3):629-641. PubMed ID: 28101646
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Searching mixed DNA profiles directly against profile databases.
    Bright JA; Taylor D; Curran J; Buckleton J
    Forensic Sci Int Genet; 2014 Mar; 9():102-10. PubMed ID: 24528588
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Casework applications of probabilistic genotyping methods for DNA mixtures that allow relationships between contributors.
    Green PJ; Mortera J; Prieto L
    Forensic Sci Int Genet; 2021 May; 52():102482. PubMed ID: 33640736
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Choice of population database for forensic DNA profile analysis.
    Steele CD; Balding DJ
    Sci Justice; 2014 Dec; 54(6):487-93. PubMed ID: 25498938
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Single-cell investigative genetics: Single-cell data produces genotype distributions concentrated at the true genotype across all mixture complexities.
    Grgicak CM; Bhembe Q; Slooten K; Sheth NC; Duffy KR; Lun DS
    Forensic Sci Int Genet; 2024 Mar; 69():103000. PubMed ID: 38199167
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Establishing the Limits of TrueAllele® Casework: A Validation Study.
    Greenspoon SA; Schiermeier-Wood L; Jenkins BC
    J Forensic Sci; 2015 Sep; 60(5):1263-76. PubMed ID: 26258391
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Evaluating forensic biology results given source level propositions.
    Taylor D; Abarno D; Hicks T; Champod C
    Forensic Sci Int Genet; 2016 Mar; 21():54-67. PubMed ID: 26720813
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The number of alleles in DNA mixtures with related contributors.
    Kruijver M; Curran JM
    Forensic Sci Int Genet; 2022 Nov; 61():102748. PubMed ID: 35961259
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Considering relatives when assessing the evidential strength of mixed DNA profiles.
    Taylor D; Bright JA; Buckleton J
    Forensic Sci Int Genet; 2014 Nov; 13():259-63. PubMed ID: 25259769
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Using continuous DNA interpretation methods to revisit likelihood ratio behaviour.
    Taylor D
    Forensic Sci Int Genet; 2014 Jul; 11():144-53. PubMed ID: 24727432
    [TBL] [Abstract][Full Text] [Related]  

  • 118. An illustration of the effect of various sources of uncertainty on DNA likelihood ratio calculations.
    Taylor D; Bright JA; Buckleton J; Curran J
    Forensic Sci Int Genet; 2014 Jul; 11():56-63. PubMed ID: 24667729
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Using subsampling to estimate the strength of handwriting evidence via score-based likelihood ratios.
    Davis LJ; Saunders CP; Hepler A; Buscaglia J
    Forensic Sci Int; 2012 Mar; 216(1-3):146-57. PubMed ID: 22018850
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Evidentiary evaluation of single cells renders highly informative forensic comparisons across multifarious admixtures.
    Duffy KR; Lun DS; Mulcahy MM; O'Donnell L; Sheth N; Grgicak CM
    Forensic Sci Int Genet; 2023 May; 64():102852. PubMed ID: 36934551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.