These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 20489018)

  • 21. Many-body interactions in quasi-freestanding graphene.
    Siegel DA; Park CH; Hwang C; Deslippe J; Fedorov AV; Louie SG; Lanzara A
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11365-9. PubMed ID: 21709258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy.
    Ohta T; Bostwick A; McChesney JL; Seyller T; Horn K; Rotenberg E
    Phys Rev Lett; 2007 May; 98(20):206802. PubMed ID: 17677726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electronic spin transport and spin precession in single graphene layers at room temperature.
    Tombros N; Jozsa C; Popinciuc M; Jonkman HT; van Wees BJ
    Nature; 2007 Aug; 448(7153):571-4. PubMed ID: 17632544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Massive Dirac fermion on the surface of a magnetically doped topological insulator.
    Chen YL; Chu JH; Analytis JG; Liu ZK; Igarashi K; Kuo HH; Qi XL; Mo SK; Moore RG; Lu DH; Hashimoto M; Sasagawa T; Zhang SC; Fisher IR; Hussain Z; Shen ZX
    Science; 2010 Aug; 329(5992):659-62. PubMed ID: 20689013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropy induced localization of pseudo-relativistic spin states in graphene double quantum wire structures.
    Villegas CE; Tavares MR; Marques GE
    Nanotechnology; 2010 Sep; 21(36):365401. PubMed ID: 20705968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct view of hot carrier dynamics in graphene.
    Johannsen JC; Ulstrup S; Cilento F; Crepaldi A; Zacchigna M; Cacho C; Turcu IC; Springate E; Fromm F; Raidel C; Seyller T; Parmigiani F; Grioni M; Hofmann P
    Phys Rev Lett; 2013 Jul; 111(2):027403. PubMed ID: 23889442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong metal adatom-substrate interaction of Gd and Fe with graphene.
    Hupalo M; Binz S; Tringides MC
    J Phys Condens Matter; 2011 Feb; 23(4):045005. PubMed ID: 21406879
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observation of Dirac bands in artificial graphene in small-period nanopatterned GaAs quantum wells.
    Wang S; Scarabelli D; Du L; Kuznetsova YY; Pfeiffer LN; West KW; Gardner GC; Manfra MJ; Pellegrini V; Wind SJ; Pinczuk A
    Nat Nanotechnol; 2018 Jan; 13(1):29-33. PubMed ID: 29180741
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoemission and density functional theory study of Ir(111); energy band gap mapping.
    Pletikosić I; Kralj M; Sokčević D; Brako R; Lazić P; Pervan P
    J Phys Condens Matter; 2010 Apr; 22(13):135006. PubMed ID: 21389509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signatures of evanescent transport in ballistic suspended graphene-superconductor junctions.
    Kumaravadivel P; Du X
    Sci Rep; 2016 Apr; 6():24274. PubMed ID: 27080733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of Dirac-like excitations in graphene in the presence of smooth inhomogeneous magnetic fields.
    Roy P; Ghosh TK; Bhattacharya K
    J Phys Condens Matter; 2012 Feb; 24(5):055301. PubMed ID: 22227414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal to insulator transition in epitaxial graphene induced by molecular doping.
    Zhou SY; Siegel DA; Fedorov AV; Lanzara A
    Phys Rev Lett; 2008 Aug; 101(8):086402. PubMed ID: 18764644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.
    Qui Le V; Huy Pham C; Lien Nguyen V
    J Phys Condens Matter; 2012 Aug; 24(34):345502. PubMed ID: 22850460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chaotic Dirac billiard in graphene quantum dots.
    Ponomarenko LA; Schedin F; Katsnelson MI; Yang R; Hill EW; Novoselov KS; Geim AK
    Science; 2008 Apr; 320(5874):356-8. PubMed ID: 18420930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.
    Cheung WM; Chan KS
    J Phys Condens Matter; 2017 Jun; 29(21):215503. PubMed ID: 28437257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?
    Denis PA; Faccio R; Mombru AW
    Chemphyschem; 2009 Mar; 10(4):715-22. PubMed ID: 19189365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-gap opening and quenching in graphene under periodic external potentials.
    Zhang A; Dai Z; Shi L; Feng YP; Zhang C
    J Chem Phys; 2010 Dec; 133(22):224705. PubMed ID: 21171694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping.
    Cabria I; López MJ; Alonso JA
    J Chem Phys; 2005 Nov; 123(20):204721. PubMed ID: 16351307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrafast dynamics of massive dirac fermions in bilayer graphene.
    Ulstrup S; Johannsen JC; Cilento F; Miwa JA; Crepaldi A; Zacchigna M; Cacho C; Chapman R; Springate E; Mammadov S; Fromm F; Raidel C; Seyller T; Parmigiani F; Grioni M; King PD; Hofmann P
    Phys Rev Lett; 2014 Jun; 112(25):257401. PubMed ID: 25014829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.