These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

869 related articles for article (PubMed ID: 20489023)

  • 41. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit.
    McCartney RR; Schmidt MC
    J Biol Chem; 2001 Sep; 276(39):36460-6. PubMed ID: 11486005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae.
    Liao HC; Chen MY
    J Biol Chem; 2012 Feb; 287(9):6089-99. PubMed ID: 22207764
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cdc14 phosphatase downmodulates ESCRT-0 complex formation on vacuolar membranes and microautophagy after TORC1 inactivation.
    Sharmin T; Morshed S; Tasnin MN; Takuma T; Ushimaru T
    Biochem Biophys Res Commun; 2021 Jul; 561():158-164. PubMed ID: 34023781
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A link between aurora kinase and Clp1/Cdc14 regulation uncovered by the identification of a fission yeast borealin-like protein.
    Bohnert KA; Chen JS; Clifford DM; Vander Kooi CW; Gould KL
    Mol Biol Cell; 2009 Aug; 20(16):3646-59. PubMed ID: 19570910
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stabilization of the metaphase spindle by Cdc14 is required for recombinational DNA repair.
    Villoria MT; Ramos F; Dueñas E; Faull P; Cutillas PR; Clemente-Blanco A
    EMBO J; 2017 Jan; 36(1):79-101. PubMed ID: 27852625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protein phosphatases of Saccharomyces cerevisiae.
    Offley SR; Schmidt MC
    Curr Genet; 2019 Feb; 65(1):41-55. PubMed ID: 30225534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase.
    Hahn JS; Thiele DJ
    J Biol Chem; 2002 Jun; 277(24):21278-84. PubMed ID: 11923319
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of Mitotic Exit in Saccharomyces cerevisiae.
    Baro B; Queralt E; Monje-Casas F
    Methods Mol Biol; 2017; 1505():3-17. PubMed ID: 27826852
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthetic physical interactions map kinetochore regulators and regions sensitive to constitutive Cdc14 localization.
    Ólafsson G; Thorpe PH
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10413-8. PubMed ID: 26240346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A New Methodology for the Quantification of In Vivo Cdc14 Phosphatase Activity.
    Queralt E; Rodriguez-Rodriguez JA
    Methods Mol Biol; 2017; 1505():89-96. PubMed ID: 27826859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways.
    Sacristán-Reviriego A; Martín H; Molina M
    Fungal Genet Biol; 2015 Apr; 77():1-11. PubMed ID: 25736922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain.
    Pike BL; Tenis N; Heierhorst J
    J Biol Chem; 2004 Sep; 279(38):39636-44. PubMed ID: 15271990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus.
    Azzam R; Chen SL; Shou W; Mah AS; Alexandru G; Nasmyth K; Annan RS; Carr SA; Deshaies RJ
    Science; 2004 Jul; 305(5683):516-9. PubMed ID: 15273393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple protein kinases influence the redistribution of fission yeast Clp1/Cdc14 phosphatase upon genotoxic stress.
    Broadus MR; Gould KL
    Mol Biol Cell; 2012 Oct; 23(20):4118-28. PubMed ID: 22918952
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new layer of regulation is required to silence the DNA damage checkpoint.
    Wang Y
    Cell Cycle; 2010 Sep; 9(18):3642. PubMed ID: 20930506
    [No Abstract]   [Full Text] [Related]  

  • 57. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.
    Smolka MB; Albuquerque CP; Chen SH; Zhou H
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10364-9. PubMed ID: 17563356
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network.
    Reményi A; Good MC; Bhattacharyya RP; Lim WA
    Mol Cell; 2005 Dec; 20(6):951-62. PubMed ID: 16364919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Hog1 MAP kinase pathway and the Mec1 DNA damage checkpoint pathway independently control the cellular responses to hydrogen peroxide.
    Haghnazari E; Heyer WD
    DNA Repair (Amst); 2004 Jul; 3(7):769-76. PubMed ID: 15177185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mathematical model of mitotic exit in budding yeast: the role of Polo kinase.
    Hancioglu B; Tyson JJ
    PLoS One; 2012; 7(2):e30810. PubMed ID: 22383977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 44.