These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 2048969)

  • 1. Influence of redox potential on metabolism of glucose in mixed cultures of rumen microorganisms.
    Marounek M; Brezina P; Simůnek J; Bartos S
    Arch Tierernahr; 1991 Jan; 41(1):63-9. PubMed ID: 2048969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers.
    Mohammed N; Ajisaka N; Lila ZA; Hara K; Mikuni K; Hara K; Kanda S; Itabashi H
    J Anim Sci; 2004 Jun; 82(6):1839-46. PubMed ID: 15217012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a twin strain of saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro.
    Lila ZA; Mohammed N; Yasui T; Kurokawa Y; Kanda S; Itabashi H
    J Anim Sci; 2004 Jun; 82(6):1847-54. PubMed ID: 15217013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of biohydrogenation intermediates and changes in the rumen protozoal population after micro algae feeding to dairy cattle.
    Boeckaert C; Boon N; Abdulsudi IZ; Verstraete W; Fievez V
    Commun Agric Appl Biol Sci; 2006; 71(1):83-6. PubMed ID: 17191479
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of ruminal microbial methane production by beta-cyclodextrin iodopropane, malate and their combination in vitro.
    Mohammed N; Lila ZA; Ajisaka N; Hara K; Mikuni K; Hara K; Kanda S; Itabashi H
    J Anim Physiol Anim Nutr (Berl); 2004 Jun; 88(5-6):188-95. PubMed ID: 15189423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A meta-analysis of fumarate effects on methane production in ruminal batch cultures.
    Ungerfeld EM; Kohn RA; Wallace RJ; Newbold CJ
    J Anim Sci; 2007 Oct; 85(10):2556-63. PubMed ID: 17565060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of monensin on in vitro utilization of lactate in the rumen contents.
    Marounek M; Simůnek J; Bartos S; Kalacnjuk GI; Savka OG
    Arch Tierernahr; 1989 Jun; 39(6):527-33. PubMed ID: 2802991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inoculum source, pH, redox potential and headspace di-hydrogen on rumen in vitro fermentation yields.
    Broudiscou LP; Offner A; Sauvant D
    Animal; 2014 Jun; 8(6):931-7. PubMed ID: 24679594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the effects of dietary particle fractions on fermentation profile and concentration of microbiota in the rumen of dairy cows fed grass silage-based diets.
    Zebeli Q; Tafaj M; Junck B; Mansmann D; Steingass H; Drochner W
    Arch Anim Nutr; 2008 Jun; 62(3):230-40. PubMed ID: 18610538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid.
    Saengkerdsub S; Kim WK; Anderson RC; Nisbet DJ; Ricke SC
    Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of acids from inulin by a mixed culture of rumen microorganisms.
    Marounek M; Simůnek J; Brezina P
    Arch Tierernahr; 1988 Mar; 38(3):175-81. PubMed ID: 3421831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro.
    Ranilla MJ; Jouany JP; Morgavi DP
    Lett Appl Microbiol; 2007 Dec; 45(6):675-80. PubMed ID: 17944841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Rumen bacterial metabolism as affected by extracellular redox potential].
    Kalachniuk HI; Marounek M; Kalachniuk LH; Savka OH
    Ukr Biokhim Zh (1978); 1994; 66(1):30-40. PubMed ID: 7974836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions.
    Lee SS; Ha JK; Cheng K
    Appl Environ Microbiol; 2000 Sep; 66(9):3807-13. PubMed ID: 10966394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet.
    Hristov AN; Ivan M; McAllister TA
    J Anim Sci; 2004 Sep; 82(9):2693-704. PubMed ID: 15446486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fermentation of glucose in small artificial rumen.
    Baran M
    Arch Tierernahr; 1982 Nov; 32(10-11):779-88. PubMed ID: 7165506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass.
    Yue ZB; Li WW; Yu HQ
    Bioresour Technol; 2013 Jan; 128():738-44. PubMed ID: 23265823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction among anaerobic microbe species in the rumen].
    Gouet P; Grain J; Dubourguier HC; Albagnac G
    Reprod Nutr Dev (1980); 1986; 26(1B):147-59. PubMed ID: 3517985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo 13C NMR studies of glucose catabolism by isolated rumen bacteria.
    Grivet JP; Stevani J; Hannequart G; Durand M
    Reprod Nutr Dev (1980); 1989; 29(1):83-8. PubMed ID: 2928603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rare earth element lanthanum on rumen methane and volatile fatty acid production and microbial flora in vitro.
    Zhang TT; Zhao GY; Zheng WS; Niu WJ; Wei C; Lin SX
    J Anim Physiol Anim Nutr (Berl); 2015 Jun; 99(3):442-8. PubMed ID: 25263819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.