These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 20490531)
1. Enhanced intestinal tumor multiplicity and grade in vivo after HZE exposure: mouse models for space radiation risk estimates. Trani D; Datta K; Doiron K; Kallakury B; Fornace AJ Radiat Environ Biophys; 2010 Aug; 49(3):389-96. PubMed ID: 20490531 [TBL] [Abstract][Full Text] [Related]
2. Relative effectiveness of HZE iron-56 particles for the induction of cytogenetic damage in vivo. Brooks A; Bao S; Rithidech K; Couch LA; Braby LA Radiat Res; 2001 Feb; 155(2):353-9. PubMed ID: 11175671 [TBL] [Abstract][Full Text] [Related]
3. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC Suman S; Kumar S; Moon BH; Fornace AJ; Datta K Life Sci Space Res (Amst); 2017 May; 13():45-50. PubMed ID: 28554509 [TBL] [Abstract][Full Text] [Related]
4. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC(1638N/+) Mice. Suman S; Kumar S; Moon BH; Strawn SJ; Thakor H; Fan Z; Shay JW; Fornace AJ; Datta K Int J Radiat Oncol Biol Phys; 2016 May; 95(1):131-138. PubMed ID: 26725728 [TBL] [Abstract][Full Text] [Related]
5. Wip1 abrogation decreases intestinal tumor frequency in APC(Min/+) mice irrespective of radiation quality. Suman S; Moon BH; Thakor H; Fornace AJ; Datta K Radiat Res; 2014 Sep; 182(3):345-9. PubMed ID: 25117622 [TBL] [Abstract][Full Text] [Related]
6. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments. Wang J; Zhang X; Wang P; Wang X; Farris AB; Wang Y Life Sci Space Res (Amst); 2016 Jun; 9():48-55. PubMed ID: 27345200 [TBL] [Abstract][Full Text] [Related]
7. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis. Wang X; Farris Iii AB; Wang P; Zhang X; Wang H; Wang Y Radiat Res; 2015 Feb; 183(2):233-9. PubMed ID: 25635344 [TBL] [Abstract][Full Text] [Related]
8. Immediate effects of acute Mars mission equivalent doses of SEP and GCR radiation on the murine gastrointestinal system-protective effects of curcumin-loaded nanolipoprotein particles (cNLPs). Diaz J; Kuhlman BM; Edenhoffer NP; Evans AC; Martin KA; Guida P; Rusek A; Atala A; Coleman MA; Wilson PF; Almeida-Porada G; Porada CD Front Astron Space Sci; 2023; 10():. PubMed ID: 38741937 [TBL] [Abstract][Full Text] [Related]
9. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Sridharan DM; Asaithamby A; Bailey SM; Costes SV; Doetsch PW; Dynan WS; Kronenberg A; Rithidech KN; Saha J; Snijders AM; Werner E; Wiese C; Cucinotta FA; Pluth JM Radiat Res; 2015 Jan; 183(1):1-26. PubMed ID: 25564719 [TBL] [Abstract][Full Text] [Related]
10. Charged-Iron-Particles Found in Galactic Cosmic Rays are Potent Inducers of Epithelial Ovarian Tumors. Mishra B; Lawson GW; Ripperdan R; Ortiz L; Luderer U Radiat Res; 2018 Aug; 190(2):142-150. PubMed ID: 29781764 [TBL] [Abstract][Full Text] [Related]
11. Tumor aggressiveness is independent of radiation quality in murine hepatocellular carcinoma and mammary tumor models. Udho EB; Huebner SM; Albrecht DM; Matkowskyj KA; Clipson L; Hedican CA; Koth R; Snow SM; Eberhardt EL; Miller D; Van Doorn R; Gjyzeli G; Spengler EK; Storts DR; Thamm DH; Edmondson EF; Weil MM; Halberg RB; Bacher JW Int J Radiat Biol; 2021; 97(8):1140-1151. PubMed ID: 33720813 [TBL] [Abstract][Full Text] [Related]
12. Benchmarking risk predictions and uncertainties in the NSCR model of GCR cancer risks with revised low let risk coefficients. Cucinotta FA; Cacao E; Kim MY; Saganti PB Life Sci Space Res (Amst); 2020 Nov; 27():64-73. PubMed ID: 34756232 [TBL] [Abstract][Full Text] [Related]
13. Sex-dependent differences in intestinal tumorigenesis induced in Apc1638N/+ mice by exposure to γ rays. Trani D; Moon BH; Kallakury B; Hartmann DP; Datta K; Fornace AJ Int J Radiat Oncol Biol Phys; 2013 Jan; 85(1):223-9. PubMed ID: 22503525 [TBL] [Abstract][Full Text] [Related]
14. Predominant contribution of the dose received from constituent heavy-ions in the induction of gastrointestinal tumorigenesis after simulated space radiation exposure. Suman S; Kumar S; Kallakury BVS; Moon BH; Angdisen J; Datta K; Fornace AJ Radiat Environ Biophys; 2022 Nov; 61(4):631-637. PubMed ID: 36167896 [TBL] [Abstract][Full Text] [Related]
15. Heavy ion radiation exposure triggered higher intestinal tumor frequency and greater β-catenin activation than γ radiation in APC(Min/+) mice. Datta K; Suman S; Kallakury BV; Fornace AJ PLoS One; 2013; 8(3):e59295. PubMed ID: 23555653 [TBL] [Abstract][Full Text] [Related]
16. Predictions of space radiation fatality risk for exploration missions. Cucinotta FA; To K; Cacao E Life Sci Space Res (Amst); 2017 May; 13():1-11. PubMed ID: 28554504 [TBL] [Abstract][Full Text] [Related]
17. Fractionated and Acute Proton Radiation Show Differential Intestinal Tumorigenesis and DNA Damage and Repair Pathway Response in Apc Suman S; Kallakury BVS; Fornace AJ; Datta K Int J Radiat Oncol Biol Phys; 2019 Nov; 105(3):525-536. PubMed ID: 31271826 [TBL] [Abstract][Full Text] [Related]
18. Safe days in space with acceptable uncertainty from space radiation exposure. Cucinotta FA; Alp M; Rowedder B; Kim MH Life Sci Space Res (Amst); 2015 Apr; 5():31-8. PubMed ID: 26177847 [TBL] [Abstract][Full Text] [Related]
19. A new approach to reduce uncertainties in space radiation cancer risk predictions. Cucinotta FA PLoS One; 2015; 10(3):e0120717. PubMed ID: 25789764 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station. Peterson LE; Cucinotta FA Mutat Res; 1999 Dec; 430(2):327-35. PubMed ID: 10631348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]