BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1048 related articles for article (PubMed ID: 20490631)

  • 1. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression.
    Micalizzi DS; Farabaugh SM; Ford HL
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):117-34. PubMed ID: 20490631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions.
    Godde NJ; Galea RC; Elsum IA; Humbert PO
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):149-68. PubMed ID: 20461450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ErbB/EGF signaling and EMT in mammary development and breast cancer.
    Hardy KM; Booth BW; Hendrix MJ; Salomon DS; Strizzi L
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):191-9. PubMed ID: 20369376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells.
    Taylor MA; Parvani JG; Schiemann WP
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):169-90. PubMed ID: 20467795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammary gland studies as important contributors to the cause of epithelial mesenchymal plasticity in malignancy.
    Ford HL; Thompson EW
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):113-5. PubMed ID: 20544376
    [No Abstract]   [Full Text] [Related]  

  • 6. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer.
    Radisky ES; Radisky DC
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):201-12. PubMed ID: 20440544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epithelial-to-mesenchymal transitions and circulating tumor cells.
    Bonnomet A; Brysse A; Tachsidis A; Waltham M; Thompson EW; Polette M; Gilles C
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):261-73. PubMed ID: 20449641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. microRNAs and EMT in mammary cells and breast cancer.
    Wright JA; Richer JK; Goodall GJ
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):213-23. PubMed ID: 20499142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer.
    Rangel MC; Karasawa H; Castro NP; Nagaoka T; Salomon DS; Bianco C
    Am J Pathol; 2012 Jun; 180(6):2188-200. PubMed ID: 22542493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer.
    Creighton CJ; Chang JC; Rosen JM
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):253-60. PubMed ID: 20354771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncanonical TGF-β signaling during mammary tumorigenesis.
    Parvani JG; Taylor MA; Schiemann WP
    J Mammary Gland Biol Neoplasia; 2011 Jun; 16(2):127-46. PubMed ID: 21448580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snail family regulation and epithelial mesenchymal transitions in breast cancer progression.
    de Herreros AG; Peiró S; Nassour M; Savagner P
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):135-47. PubMed ID: 20455012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells.
    Galliher AJ; Schiemann WP
    Breast Cancer Res; 2006; 8(4):R42. PubMed ID: 16859511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the D492 Cell Lines to Explore Breast Morphogenesis, EMT and Cancer Progression in 3D Culture.
    Briem E; Ingthorsson S; Traustadottir GA; Hilmarsdottir B; Gudjonsson T
    J Mammary Gland Biol Neoplasia; 2019 Jun; 24(2):139-147. PubMed ID: 30684066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling.
    Micalizzi DS; Christensen KL; Jedlicka P; Coletta RD; Barón AE; Harrell JC; Horwitz KB; Billheimer D; Heichman KA; Welm AL; Schiemann WP; Ford HL
    J Clin Invest; 2009 Sep; 119(9):2678-90. PubMed ID: 19726885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLUG: Critical regulator of epithelial cell identity in breast development and cancer.
    Phillips S; Kuperwasser C
    Cell Adh Migr; 2014; 8(6):578-87. PubMed ID: 25482617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pathology of EMT in mouse mammary tumorigenesis.
    Cardiff RD
    J Mammary Gland Biol Neoplasia; 2010 Jun; 15(2):225-33. PubMed ID: 20521088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition.
    McCoy EL; Iwanaga R; Jedlicka P; Abbey NS; Chodosh LA; Heichman KA; Welm AL; Ford HL
    J Clin Invest; 2009 Sep; 119(9):2663-77. PubMed ID: 19726883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression.
    May CD; Sphyris N; Evans KW; Werden SJ; Guo W; Mani SA
    Breast Cancer Res; 2011 Feb; 13(1):202. PubMed ID: 21392411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rb depletion results in deregulation of E-cadherin and induction of cellular phenotypic changes that are characteristic of the epithelial-to-mesenchymal transition.
    Arima Y; Inoue Y; Shibata T; Hayashi H; Nagano O; Saya H; Taya Y
    Cancer Res; 2008 Jul; 68(13):5104-12. PubMed ID: 18593909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.