These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20490784)

  • 21. Attention allocation before antisaccades.
    Klapetek A; Jonikaitis D; Deubel H
    J Vis; 2016; 16(1):11. PubMed ID: 26790843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. When pros become cons for anti- versus prosaccades: factors with opposite or common effects on different saccade types.
    Kristjánsson A; Vandenbroucke MW; Driver J
    Exp Brain Res; 2004 Mar; 155(2):231-44. PubMed ID: 14661119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Goal-directed reaching: the allocentric coding of target location renders an offline mode of control.
    Manzone J; Heath M
    Exp Brain Res; 2018 Apr; 236(4):1149-1159. PubMed ID: 29453490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trial type probability modulates the cost of antisaccades.
    Chiau HY; Tseng P; Su JH; Tzeng OJ; Hung DL; Muggleton NG; Juan CH
    J Neurophysiol; 2011 Aug; 106(2):515-26. PubMed ID: 21543748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of stimulus eccentricity and direction on characteristics of pro- and antisaccades in non-human primates.
    Bell AH; Everling S; Munoz DP
    J Neurophysiol; 2000 Nov; 84(5):2595-604. PubMed ID: 11068001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why are antisaccades slower than prosaccades? A novel finding using a new paradigm.
    Olk B; Kingstone A
    Neuroreport; 2003 Jan; 14(1):151-5. PubMed ID: 12544848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixed pro and antisaccade performance in children and adults.
    Irving EL; Tajik-Parvinchi DJ; Lillakas L; González EG; Steinbach MJ
    Brain Res; 2009 Feb; 1255():67-74. PubMed ID: 19103183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Task-switching in oculomotor control: unidirectional switch-cost when alternating between pro- and antisaccades.
    Weiler J; Heath M
    Neurosci Lett; 2012 Nov; 530(2):150-4. PubMed ID: 23063688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of task instructions on pro and antisaccade performance.
    Taylor AJ; Hutton SB
    Exp Brain Res; 2009 May; 195(1):5-14. PubMed ID: 19283372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Looking away: distractor influences on saccadic trajectory and endpoint in prosaccade and antisaccade tasks.
    Laidlaw KE; Zhu MJ; Kingstone A
    Exp Brain Res; 2016 Jun; 234(6):1637-48. PubMed ID: 26838359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The inter-trial effect of prepared but not executed antisaccades.
    Yeung S; Rubino C; Viswanathan J; Barton JJ
    Exp Brain Res; 2014 Dec; 232(12):3699-705. PubMed ID: 25106758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is the relationship of prosaccade reaction times and antisaccade errors mediated by working memory?
    Crawford TJ; Parker E; Solis-Trapala I; Mayes J
    Exp Brain Res; 2011 Feb; 208(3):385-97. PubMed ID: 21107543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response suppression delays the planning of subsequent stimulus-driven saccades.
    Weiler J; Mitchell T; Heath M
    PLoS One; 2014; 9(1):e86408. PubMed ID: 24466076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attention control and the antisaccade task: a response time distribution analysis.
    Unsworth N; Spillers GJ; Brewer GA; McMillan B
    Acta Psychol (Amst); 2011 May; 137(1):90-100. PubMed ID: 21470585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perceptual averaging governs antisaccade endpoint bias.
    Gillen C; Heath M
    Exp Brain Res; 2014 Oct; 232(10):3201-10. PubMed ID: 24935477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The unidirectional prosaccade switch-cost: electroencephalographic evidence of task-set inertia in oculomotor control.
    Weiler J; Hassall CD; Krigolson OE; Heath M
    Behav Brain Res; 2015 Feb; 278():323-9. PubMed ID: 25453741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition and generation of saccades: rapid event-related fMRI of prosaccades, antisaccades, and nogo trials.
    Brown MR; Goltz HC; Vilis T; Ford KA; Everling S
    Neuroimage; 2006 Nov; 33(2):644-59. PubMed ID: 16949303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of antisaccade costs through manipulation of target-location probability: only under decisional uncertainty.
    Jóhannesson ÓI; Haraldsson HM; Kristjánsson Á
    Vision Res; 2013 Dec; 93():62-73. PubMed ID: 24148874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of task-specific training on saccadic eye movement performance.
    Montenegro SM; Edelman JA
    J Neurophysiol; 2019 Oct; 122(4):1661-1674. PubMed ID: 31461366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost.
    Weiler J; Heath M
    J Neurophysiol; 2014 Nov; 112(9):2176-84. PubMed ID: 25122700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.