These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20490879)
1. Analysis of structural water and CH···π interactions in HIV-1 protease and PTP1B complexes using a hydrogen bond prediction tool, HBPredicT. Yesudas JP; Sayyed FB; Suresh CH J Mol Model; 2011 Feb; 17(2):401-13. PubMed ID: 20490879 [TBL] [Abstract][Full Text] [Related]
2. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis. Prashar V; Bihani S; Das A; Ferrer JL; Hosur M PLoS One; 2009 Nov; 4(11):e7860. PubMed ID: 19924250 [TBL] [Abstract][Full Text] [Related]
3. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. Lu Y; Yang CY; Wang S J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623 [TBL] [Abstract][Full Text] [Related]
4. Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Abad-Zapatero C; Perišić O; Wass J; Bento AP; Overington J; Al-Lazikani B; Johnson ME Drug Discov Today; 2010 Oct; 15(19-20):804-11. PubMed ID: 20727982 [TBL] [Abstract][Full Text] [Related]
6. Energy calculations and analysis of HIV-1 protease-inhibitor crystal structures. Gustchina A; Sansom C; Prevost M; Richelle J; Wodak SY; Wlodawer A; Weber IT Protein Eng; 1994 Mar; 7(3):309-17. PubMed ID: 8177879 [TBL] [Abstract][Full Text] [Related]
7. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition. Sarkhel S; Desiraju GR Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187 [TBL] [Abstract][Full Text] [Related]
8. Conformational analysis of TMC114, a novel HIV-1 protease inhibitor. Nivesanond K; Peeters A; Lamoen D; Van Alsenoy C J Chem Inf Model; 2008 Jan; 48(1):99-108. PubMed ID: 18173253 [TBL] [Abstract][Full Text] [Related]
9. Statistical and molecular dynamics studies of buried waters in globular proteins. Park S; Saven JG Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899 [TBL] [Abstract][Full Text] [Related]
10. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification. Islam MA; Pillay TS J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527 [TBL] [Abstract][Full Text] [Related]
11. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. Eleftheriou P; Petrou A; Geronikaki A; Liaras K; Dirnali S; Anna M SAR QSAR Environ Res; 2015; 26(7-9):557-76. PubMed ID: 26294069 [TBL] [Abstract][Full Text] [Related]
12. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 3. The free energy contribution of structural water molecules in HIV-1 protease complexes. Fornabaio M; Spyrakis F; Mozzarelli A; Cozzini P; Abraham DJ; Kellogg GE J Med Chem; 2004 Aug; 47(18):4507-16. PubMed ID: 15317462 [TBL] [Abstract][Full Text] [Related]
13. The role of hydrogen bonding in the enzymatic reaction catalyzed by HIV-1 protease. Trylska J; Grochowski P; McCammon JA Protein Sci; 2004 Feb; 13(2):513-28. PubMed ID: 14739332 [TBL] [Abstract][Full Text] [Related]
14. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis. Karnati KR; Wang Y J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319 [TBL] [Abstract][Full Text] [Related]
15. Structure, dynamics and solvation of HIV-1 protease/saquinavir complex in aqueous solution and their contributions to drug resistance: molecular dynamic simulations. Wittayanarakul K; Aruksakunwong O; Sompornpisut P; Sanghiran-Lee V; Parasuk V; Pinitglang S; Hannongbua S J Chem Inf Model; 2005; 45(2):300-8. PubMed ID: 15807491 [TBL] [Abstract][Full Text] [Related]
16. Importance of CH/π hydrogen bonds in recognition of the core motif in proline-recognition domains: an ab initio fragment molecular orbital study. Ozawa T; Okazaki K; Kitaura K J Comput Chem; 2011 Oct; 32(13):2774-82. PubMed ID: 21710635 [TBL] [Abstract][Full Text] [Related]
17. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264 [TBL] [Abstract][Full Text] [Related]
18. The particle concept: placing discrete water molecules during protein-ligand docking predictions. Rarey M; Kramer B; Lengauer T Proteins; 1999 Jan; 34(1):17-28. PubMed ID: 10336380 [TBL] [Abstract][Full Text] [Related]
19. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. Poornima CS; Dean PM J Comput Aided Mol Des; 1995 Dec; 9(6):500-12. PubMed ID: 8789192 [TBL] [Abstract][Full Text] [Related]
20. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]