These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20491119)

  • 1. Phase-controlled synthesis of transition-metal phosphide nanowires by Ullmann-type reactions.
    Wang J; Yang Q; Zhang Z; Sun S
    Chemistry; 2010 Jul; 16(26):7916-24. PubMed ID: 20491119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ternary cobalt-iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures.
    Ye E; Zhang SY; Lim SH; Bosman M; Zhang Z; Win KY; Han MY
    Chemistry; 2011 May; 17(21):5982-8. PubMed ID: 21491516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphide nanostructures.
    Wang J; Yang Q; Zhang Z; Li T; Zhang S
    Dalton Trans; 2010 Jan; (1):227-33. PubMed ID: 20023954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP.
    Muthuswamy E; Kharel PR; Lawes G; Brock SL
    ACS Nano; 2009 Aug; 3(8):2383-93. PubMed ID: 19653639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles.
    Muthuswamy E; Savithra GH; Brock SL
    ACS Nano; 2011 Mar; 5(3):2402-11. PubMed ID: 21381759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump.
    Park J; Koo B; Yoon KY; Hwang Y; Kang M; Park JG; Hyeon T
    J Am Chem Soc; 2005 Jun; 127(23):8433-40. PubMed ID: 15941277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel synthetic route to transition metal phosphide nanoparticles.
    Yao Z; Li M; Wang X; Qiao X; Zhu J; Zhao Y; Wang G; Yin J; Wang H
    Dalton Trans; 2015 Mar; 44(12):5503-9. PubMed ID: 25697219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of MnP nanocrystals by treatment of metal carbonyl complexes with phosphines: a new, versatile route to nanoscale transition metal phosphides.
    Perera SC; Tsoi G; Wenger LE; Brock SL
    J Am Chem Soc; 2003 Nov; 125(46):13960-1. PubMed ID: 14611223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation does not (always) kill reactivity of transition metals: solution-phase conversion of nanoscale transition metal oxides to phosphides and sulfides.
    Muthuswamy E; Brock SL
    J Am Chem Soc; 2010 Nov; 132(45):15849-51. PubMed ID: 20964294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A developed Ullmann reaction to III-V semiconductor nanocrystals in sealed vacuum tubes.
    Wang J; Yang Q
    Dalton Trans; 2008 Nov; (43):6060-6. PubMed ID: 19082064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periodic inclusion of room-temperature-ferromagnetic metal phosphide nanoparticles in carbon nanotubes.
    Jourdain V; Simpson ET; Paillet M; Kasama T; Dunin-Borkowski RE; Poncharal P; Zahab A; Loiseau A; Robertson J; Bernier P
    J Phys Chem B; 2006 May; 110(20):9759-63. PubMed ID: 16706422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures and magnetic properties of complexes of M(II)Cl2 (M = Cu, Ni, and Co) coordinated with 4-(N-tert-butyloxyamino)-2-(methoxymethylenyl)pyridine: 2D magnetic anisotropy of the aminoxyl-Co(II) complex in the crystalline state.
    Zhu Z; Karasawa S; Koga N
    Inorg Chem; 2005 Aug; 44(17):6004-11. PubMed ID: 16097820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes.
    Gao C; Tao F; Lin W; Xu Z; Xue Z
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical routes for production of transition-metal phosphides on the nanoscale: implications for advanced magnetic and catalytic materials.
    Brock SL; Perera SC; Stamm KL
    Chemistry; 2004 Jul; 10(14):3364-71. PubMed ID: 15252782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy.
    Grosvenor AP; Wik SD; Cavell RG; Mar A
    Inorg Chem; 2005 Nov; 44(24):8988-98. PubMed ID: 16296854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, structure and magnetic properties of chiral and nonchiral transition-metal malates.
    Beghidja A; Rabu P; Rogez G; Welter R
    Chemistry; 2006 Oct; 12(29):7627-38. PubMed ID: 16871501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-nuclearity metal-cyanide clusters: synthesis, magnetic properties, and inclusion behavior of open-cage species incorporating [(tach)M(CN)3] (M = Cr, Fe, Co) complexes.
    Yang JY; Shores MP; Sokol JJ; Long JR
    Inorg Chem; 2003 Mar; 42(5):1403-19. PubMed ID: 12611505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: an experimental and theoretical study.
    Fox DC; Fiedler AT; Halfen HL; Brunold TC; Halfen JA
    J Am Chem Soc; 2004 Jun; 126(24):7627-38. PubMed ID: 15198611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.