BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20491131)

  • 1. Complex assembly behavior during the encapsulation of green fluorescent protein analogs in virus derived protein capsules.
    Minten IJ; Nolte RJ; Cornelissen JJ
    Macromol Biosci; 2010 May; 10(5):539-45. PubMed ID: 20491131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled encapsulation of multiple proteins in virus capsids.
    Minten IJ; Hendriks LJ; Nolte RJ; Cornelissen JJ
    J Am Chem Soc; 2009 Dec; 131(49):17771-3. PubMed ID: 19995072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-ion-induced formation and stabilization of protein cages based on the cowpea chlorotic mottle virus.
    Minten IJ; Wilke KD; Hendriks LJ; van Hest JC; Nolte RJ; Cornelissen JJ
    Small; 2011 Apr; 7(7):911-9. PubMed ID: 21381194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled integration of polymers into viral capsids.
    Comellas-Aragonès M; de la Escosura A; Dirks AT; van der Ham A; Fusté-Cuñé A; Cornelissen JJ; Nolte RJ
    Biomacromolecules; 2009 Nov; 10(11):3141-7. PubMed ID: 19839603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transitions in Cowpea chlorotic mottle virus (CCMV).
    Liepold LO; Revis J; Allen M; Oltrogge L; Young M; Douglas T
    Phys Biol; 2005 Nov; 2(4):S166-72. PubMed ID: 16280622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The disassembly, reassembly and stability of CCMV protein capsids.
    Lavelle L; Michel JP; Gingery M
    J Virol Methods; 2007 Dec; 146(1-2):311-6. PubMed ID: 17804089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the energy landscape of virus self-assembly to generate kinetically trapped nanoparticles.
    Burns K; Mukherjee S; Keef T; Johnson JM; Zlotnick A
    Biomacromolecules; 2010 Feb; 11(2):439-42. PubMed ID: 20136150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring structural transitions in icosahedral virus protein cages by site-directed spin labeling.
    Usselman RJ; Walter ED; Willits D; Douglas T; Young M; Singel DJ
    J Am Chem Soc; 2011 Mar; 133(12):4156-9. PubMed ID: 21388197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids.
    Wu Y; Yang H; Shin HJ
    Biotechnol Lett; 2014 Mar; 36(3):515-21. PubMed ID: 24190479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular studies on bromovirus capsid protein. III. Analysis of cell-to-cell movement competence of coat protein defective variants of cowpea chlorotic mottle virus.
    Rao AL
    Virology; 1997 Jun; 232(2):385-95. PubMed ID: 9191853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting fluorescent polymers to probe the self-assembly of virus-like particles.
    Cadena-Nava RD; Hu Y; Garmann RF; Ng B; Zelikin AN; Knobler CM; Gelbart WM
    J Phys Chem B; 2011 Mar; 115(10):2386-91. PubMed ID: 21338131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary structure is critical for protein display on capsid-like particles (CLPs): efficient generation of hepatitis B virus CLPs presenting monomeric but not dimeric and tetrameric fluorescent proteins.
    Vogel M; Vorreiter J; Nassal M
    Proteins; 2005 Feb; 58(2):478-88. PubMed ID: 15526302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can the RNA of the cowpea chlorotic mottle virus be released through a channel by means of free diffusion? A test in silico.
    Isea R; Aponte C; Cipriani R
    Biophys Chem; 2004 Feb; 107(2):101-6. PubMed ID: 14962592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capsid protein gene and the type of host plant differentially modulate cell-to-cell movement of cowpea chlorotic mottle virus.
    Rao AL; Cooper B
    Virus Genes; 2006 Jun; 32(3):219-27. PubMed ID: 16732474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus.
    Tama F; Brooks CL
    J Mol Biol; 2002 May; 318(3):733-47. PubMed ID: 12054819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCMV-Based Enzymatic Nanoreactors.
    de Ruiter MV; Putri RM; Cornelissen JJLM
    Methods Mol Biol; 2018; 1776():237-247. PubMed ID: 29869246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle.
    Mello AF; Clark AJ; Perry KL
    J Gen Virol; 2010 Feb; 91(Pt 2):545-51. PubMed ID: 19828763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic properties of cowpea chlorotic mottle virus and cucumber mosaic virus capsids.
    Konecny R; Trylska J; Tama F; Zhang D; Baker NA; Brooks CL; McCammon JA
    Biopolymers; 2006 Jun; 82(2):106-20. PubMed ID: 16278831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a disassembly deficient mutant of cowpea chlorotic mottle virus.
    Fox JM; Albert FG; Speir JA; Young MJ
    Virology; 1997 Jan; 227(1):229-33. PubMed ID: 9007078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of capsid assembly for an icosahedral plant virus.
    Zlotnick A; Aldrich R; Johnson JM; Ceres P; Young MJ
    Virology; 2000 Nov; 277(2):450-6. PubMed ID: 11080492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.