These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20491434)

  • 1. Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans.
    Hajdu R; Pinheiro JP; Galceran J; Slaveykova VI
    Environ Sci Technol; 2010 Jun; 44(12):4597-602. PubMed ID: 20491434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
    von Rozycki T; Nies DH
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):115-39. PubMed ID: 18830684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidative enzyme profiling and biosorption ability of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.
    Shamim S; Rehman A
    J Basic Microbiol; 2015 Mar; 55(3):374-81. PubMed ID: 23832807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of extracytoplasmic function sigma factors to transition metal homeostasis in Cupriavidus metallidurans strain CH34.
    Grosse C; Friedrich S; Nies DH
    J Mol Microbiol Biotechnol; 2007; 12(3-4):227-40. PubMed ID: 17587871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus metallidurans CH34.
    Desaunay A; Martins JM
    J Hazard Mater; 2014 May; 273():231-8. PubMed ID: 24747375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
    Scherer J; Nies DH
    Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica.
    Chen WM; Wu CH; James EK; Chang JS
    J Hazard Mater; 2008 Mar; 151(2-3):364-71. PubMed ID: 17624667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34.
    Julian DJ; Kershaw CJ; Brown NL; Hobman JL
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):149-59. PubMed ID: 19005773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network.
    Monsieurs P; Moors H; Van Houdt R; Janssen PJ; Janssen A; Coninx I; Mergeay M; Leys N
    Biometals; 2011 Dec; 24(6):1133-51. PubMed ID: 21706166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical surface properties of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 under cadmium stress.
    Shamim S; Rehman A
    J Basic Microbiol; 2014 Apr; 54(4):306-14. PubMed ID: 23564035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2.
    Shamim S; Rehman A; Qazi MH
    Arch Environ Contam Toxicol; 2014 Aug; 67(2):149-57. PubMed ID: 24595738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.
    Herzberg M; Bauer L; Nies DH
    Metallomics; 2014 Mar; 6(3):421-36. PubMed ID: 24407051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the rate and extent of cadmium and copper desorption from soils in the presence of bacterial extracellular polymer.
    Jensen-Spaulding A; Cabral K; Shuler ML; Lion LW
    Water Res; 2004 May; 38(9):2230-9. PubMed ID: 15142783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming, swarming, twitching, and chemotactic responses of Cupriavidus metallidurans CH34 and Pseudomonas putida mt2 in the presence of cadmium.
    Shamim S; Rehman A; Qazi MH
    Arch Environ Contam Toxicol; 2014 Apr; 66(3):407-14. PubMed ID: 24306627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desorption of cadmium from goethite: effects of pH, temperature and aging.
    Mustafa G; Kookana RS; Singh B
    Chemosphere; 2006 Jul; 64(5):856-65. PubMed ID: 16330070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments.
    Janssen PJ; Van Houdt R; Moors H; Monsieurs P; Morin N; Michaux A; Benotmane MA; Leys N; Vallaeys T; Lapidus A; Monchy S; Médigue C; Taghavi S; McCorkle S; Dunn J; van der Lelie D; Mergeay M
    PLoS One; 2010 May; 5(5):e10433. PubMed ID: 20463976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of metal-ligand complexes on the cadmium and zinc biokinetics in the marine bacterium, Bacillus firmus.
    Keung CF; Guo F; Qian P; Wang WX
    Environ Toxicol Chem; 2008 Jan; 27(1):131-7. PubMed ID: 18092855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.