These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 20491949)
1. Biogeochemical controls on microbial diversity in seafloor sulphidic sediments. Müller M; Handley KM; Lloyd J; Pancost RD; Mills RA Geobiology; 2010 Sep; 8(4):309-26. PubMed ID: 20491949 [TBL] [Abstract][Full Text] [Related]
2. Functional diversity of bacteria in a ferruginous hydrothermal sediment. Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934 [TBL] [Abstract][Full Text] [Related]
3. Microbial community diversity in seafloor basalt from the Arctic spreading ridges. Lysnes K; Thorseth IH; Steinsbu BO; Øvreås L; Torsvik T; Pedersen RB FEMS Microbiol Ecol; 2004 Nov; 50(3):213-30. PubMed ID: 19712362 [TBL] [Abstract][Full Text] [Related]
4. The diversity and abundance of bacteria inhabiting seafloor lavas positively correlate with rock alteration. Santelli CM; Edgcomb VP; Bach W; Edwards KJ Environ Microbiol; 2009 Jan; 11(1):86-98. PubMed ID: 18783382 [TBL] [Abstract][Full Text] [Related]
5. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Kubo K; Knittel K; Amann R; Fukui M; Matsuura K Syst Appl Microbiol; 2011 Jun; 34(4):293-302. PubMed ID: 21353426 [TBL] [Abstract][Full Text] [Related]
6. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
7. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398 [TBL] [Abstract][Full Text] [Related]
8. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273 [TBL] [Abstract][Full Text] [Related]
9. Microbial diversity in Cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic basin. Forschner SR; Sheffer R; Rowley DC; Smith DC Environ Microbiol; 2009 Mar; 11(3):630-9. PubMed ID: 19278449 [TBL] [Abstract][Full Text] [Related]
10. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). Engel AS; Meisinger DB; Porter ML; Payn RA; Schmid M; Stern LA; Schleifer KH; Lee NM ISME J; 2010 Jan; 4(1):98-110. PubMed ID: 19675595 [TBL] [Abstract][Full Text] [Related]
11. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Myshrall KL; Mobberley JM; Green SJ; Visscher PT; Havemann SA; Reid RP; Foster JS Geobiology; 2010 Sep; 8(4):337-54. PubMed ID: 20491947 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related]
13. Microbial CO(2) fixation and sulfur cycling associated with low-temperature emissions at the Lilliput hydrothermal field, southern Mid-Atlantic Ridge (9 degrees S). Perner M; Seifert R; Weber S; Koschinsky A; Schmidt K; Strauss H; Peters M; Haase K; Imhoff JF Environ Microbiol; 2007 May; 9(5):1186-201. PubMed ID: 17472634 [TBL] [Abstract][Full Text] [Related]
14. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. Mason OU; Di Meo-Savoie CA; Van Nostrand JD; Zhou J; Fisk MR; Giovannoni SJ ISME J; 2009 Feb; 3(2):231-42. PubMed ID: 18843298 [TBL] [Abstract][Full Text] [Related]
15. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Macur RE; Jay ZJ; Taylor WP; Kozubal MA; Kocar BD; Inskeep WP Geobiology; 2013 Jan; 11(1):86-99. PubMed ID: 23231658 [TBL] [Abstract][Full Text] [Related]
16. The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. Purcell D; Sompong U; Yim LC; Barraclough TG; Peerapornpisal Y; Pointing SB FEMS Microbiol Ecol; 2007 Jun; 60(3):456-66. PubMed ID: 17386034 [TBL] [Abstract][Full Text] [Related]
17. An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys. Houghton JL; Seyfried WE Geobiology; 2010 Dec; 8(5):457-70. PubMed ID: 20726900 [TBL] [Abstract][Full Text] [Related]
18. Effects of abiotic factors on the phylogenetic diversity of bacterial communities in acidic thermal springs. Mathur J; Bizzoco RW; Ellis DG; Lipson DA; Poole AW; Levine R; Kelley ST Appl Environ Microbiol; 2007 Apr; 73(8):2612-23. PubMed ID: 17220248 [TBL] [Abstract][Full Text] [Related]
19. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. Handley KM; Héry M; Lloyd JR Int J Syst Evol Microbiol; 2009 Apr; 59(Pt 4):886-92. PubMed ID: 19329625 [TBL] [Abstract][Full Text] [Related]
20. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Musat N; Werner U; Knittel K; Kolb S; Dodenhof T; van Beusekom JE; de Beer D; Dubilier N; Amann R Syst Appl Microbiol; 2006 Jun; 29(4):333-48. PubMed ID: 16431068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]