BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 20492143)

  • 1. Formation of succinyl genistin and succinyl daidzin by Bacillus species.
    Park CU; Jeong MK; Park MH; Yeu J; Park MS; Kim MJ; Ahn SM; Chang PS; Lee J
    J Food Sci; 2010; 75(1):C128-33. PubMed ID: 20492143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18.
    Kuo LC; Wu RY; Lee KT
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1181-8. PubMed ID: 22350317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of isoflavone profiles in a fermented soy food with almond powder.
    Park M; Jeong MK; Kim M; Lee J
    J Food Sci; 2012 Jan; 77(1):C128-34. PubMed ID: 22182181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New 6-O-acyl isoflavone glycosides from soybeans fermented with Bacillus subtilis (natto). I. 6-O-succinylated isoflavone glycosides and their preventive effects on bone loss in ovariectomized rats fed a calcium-deficient diet.
    Toda T; Uesugi T; Hirai K; Nukaya H; Tsuji K; Ishida H
    Biol Pharm Bull; 1999 Nov; 22(11):1193-201. PubMed ID: 10598027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto.
    Kuo LC; Cheng WY; Wu RY; Huang CJ; Lee KT
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):314-20. PubMed ID: 16715232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation.
    Hu Y; Ge C; Yuan W; Zhu R; Zhang W; Du L; Xue J
    J Sci Food Agric; 2010 May; 90(7):1194-202. PubMed ID: 20394001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and characterization of two beta-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto.
    Kuo LC; Lee KT
    J Agric Food Chem; 2008 Jan; 56(1):119-25. PubMed ID: 18069788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High production of succinyl isoflavone glycosides by Bacillus licheniformis ZSP01 resting cells in aqueous miscible organic medium.
    Zhang S; Chen G; Chu J; Wu B; He B
    Biotechnol Appl Biochem; 2015; 62(2):255-9. PubMed ID: 24919721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of 14 Isoflavone Isomers in Natto by UPLC-ESI-MS/MS and Antioxidation and Antiglycation Profiles.
    Xiang A; Wang J; Xie B; Hu K; Chen M; Sun Z
    Foods; 2022 Jul; 11(15):. PubMed ID: 35892813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma profiling of intact isoflavone metabolites by high-performance liquid chromatography and mass spectrometric identification of flavone glycosides daidzin and genistin in human plasma after administration of kinako.
    Hosoda K; Furuta T; Yokokawa A; Ogura K; Hiratsuka A; Ishii K
    Drug Metab Dispos; 2008 Aug; 36(8):1485-95. PubMed ID: 18443032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria.
    Chun J; Kim GM; Lee KW; Choi ID; Kwon GH; Park JY; Jeong SJ; Kim JS; Kim JH
    J Food Sci; 2007 Mar; 72(2):M39-44. PubMed ID: 17995840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of 15 isoflavone isomers in soy foods and supplements by high-performance liquid chromatography.
    Yanaka K; Takebayashi J; Matsumoto T; Ishimi Y
    J Agric Food Chem; 2012 Apr; 60(16):4012-6. PubMed ID: 22433078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilities of daidzin, glycitin, genistin, and generation of derivatives during heating.
    Xu Z; Wu Q; Godber JS
    J Agric Food Chem; 2002 Dec; 50(25):7402-6. PubMed ID: 12452666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat and pH effects on the conjugated forms of genistin and daidzin isoflavones.
    Mathias K; Ismail B; Corvalan CM; Hayes KD
    J Agric Food Chem; 2006 Oct; 54(20):7495-502. PubMed ID: 17002413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of water-to-bean ratio on the contents and compositions of isoflavones in tofu.
    Kao FJ; Su NW; Lee MH
    J Agric Food Chem; 2004 Apr; 52(8):2277-81. PubMed ID: 15080633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism.
    Hsu C; Wu BY; Chang YC; Chang CF; Chiou TY; Su NW
    J Agric Food Chem; 2018 Jan; 66(1):127-137. PubMed ID: 29231720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecules and nutritional quality of soymilk fermented with probiotic yeast and bacteria.
    Rekha CR; Vijayalakshmi G
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):452-63. PubMed ID: 18607548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones.
    Ahmad A; Ramasamy K; Majeed AB; Mani V
    Pharm Biol; 2015 May; 53(5):758-66. PubMed ID: 25756802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of tofu isoflavone recovery by pretreatment of soy milk with koji enzyme extract.
    Wu ML; Chang JC; Lai YH; Cheng SL; Chiou RY
    J Agric Food Chem; 2004 Jul; 52(15):4785-90. PubMed ID: 15264915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures.
    Wu CH; Chou CC
    J Agric Food Chem; 2009 Nov; 57(22):10695-700. PubMed ID: 19919117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.