These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 20492645)
1. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process. Pagliardini J; Hubmann G; Bideaux C; Alfenore S; Nevoigt E; Guillouet SE Microb Cell Fact; 2010 May; 9():36. PubMed ID: 20492645 [TBL] [Abstract][Full Text] [Related]
2. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043 [TBL] [Abstract][Full Text] [Related]
3. Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Hubmann G; Guillouet S; Nevoigt E Appl Environ Microbiol; 2011 Sep; 77(17):5857-67. PubMed ID: 21724879 [TBL] [Abstract][Full Text] [Related]
4. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Michnick S; Roustan JL; Remize F; Barre P; Dequin S Yeast; 1997 Jul; 13(9):783-93. PubMed ID: 9234667 [TBL] [Abstract][Full Text] [Related]
5. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae. Kong QX; Cao LM; Zhang AL; Chen X Appl Microbiol Biotechnol; 2007 Jan; 73(6):1382-6. PubMed ID: 17021874 [TBL] [Abstract][Full Text] [Related]
6. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY Appl Microbiol Biotechnol; 2009 Feb; 82(2):287-92. PubMed ID: 19018525 [TBL] [Abstract][Full Text] [Related]
8. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031 [TBL] [Abstract][Full Text] [Related]
9. 3' Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity. Ding WT; Zhang GC; Liu JJ Appl Environ Microbiol; 2013 May; 79(10):3273-81. PubMed ID: 23503313 [TBL] [Abstract][Full Text] [Related]
10. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484 [TBL] [Abstract][Full Text] [Related]
11. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae. Kim JW; Chin YW; Park YC; Seo JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):49-54. PubMed ID: 21909679 [TBL] [Abstract][Full Text] [Related]
12. Increasing ethanol titer and yield in a gpd1Δ gpd2Δ strain by simultaneous overexpression of GLT1 and STL1 in Saccharomyces cerevisiae. Wang J; Liu W; Ding W; Zhang G; Liu J Biotechnol Lett; 2013 Nov; 35(11):1859-64. PubMed ID: 23801122 [TBL] [Abstract][Full Text] [Related]
13. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Guo ZP; Zhang L; Ding ZY; Shi GY Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600 [TBL] [Abstract][Full Text] [Related]
14. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Valadi H; Larsson C; Gustafsson L Appl Microbiol Biotechnol; 1998 Oct; 50(4):434-9. PubMed ID: 9830094 [TBL] [Abstract][Full Text] [Related]
15. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Cambon B; Monteil V; Remize F; Camarasa C; Dequin S Appl Environ Microbiol; 2006 Jul; 72(7):4688-94. PubMed ID: 16820460 [TBL] [Abstract][Full Text] [Related]
16. Interaction between the production of ethanol and glycerol in fed-batch bioreactors. Mutton MJR; Ferrari FCS; Freita LA; Freita CM; Andrietta MDGS; Andrietta SR Braz J Microbiol; 2019 Apr; 50(2):389-394. PubMed ID: 30850977 [TBL] [Abstract][Full Text] [Related]
17. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146 [TBL] [Abstract][Full Text] [Related]
18. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Remize F; Cambon B; Barnavon L; Dequin S Yeast; 2003 Nov; 20(15):1243-53. PubMed ID: 14618562 [TBL] [Abstract][Full Text] [Related]
19. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Nevoigt E; Stahl U Yeast; 1996 Oct; 12(13):1331-7. PubMed ID: 8923738 [TBL] [Abstract][Full Text] [Related]
20. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Wang PM; Zheng DQ; Liu TZ; Tao XL; Feng MG; Min H; Jiang XH; Wu XC Bioresour Technol; 2012 Mar; 108():203-10. PubMed ID: 22269055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]