BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20492686)

  • 1. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress.
    Gigliobianco T; Lakaye B; Wins P; El Moualij B; Zorzi W; Bettendorff L
    BMC Microbiol; 2010 May; 10():148. PubMed ID: 20492686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli.
    Gigliobianco T; Lakaye B; Makarchikov AF; Wins P; Bettendorff L
    BMC Microbiol; 2008 Jan; 8():16. PubMed ID: 18215312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate.
    Makarchikov AF; Brans A; Bettendorff L
    BMC Biochem; 2007 Aug; 8():17. PubMed ID: 17705845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Update on Thiamine Triphosphorylated Derivatives and Metabolizing Enzymatic Complexes.
    Bettendorff L
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate.
    Gigliobianco T; Gangolf M; Lakaye B; Pirson B; von Ballmoos C; Wins P; Bettendorff L
    Sci Rep; 2013; 3():1071. PubMed ID: 23323214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors.
    Bettendorff L; Wins P
    FEBS J; 2009 Jun; 276(11):2917-25. PubMed ID: 19490098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiamine triphosphate, a new signal required for optimal growth of Escherichia coli during amino acid starvation.
    Lakaye B; Wirtzfeld B; Wins P; Grisar T; Bettendorff L
    J Biol Chem; 2004 Apr; 279(17):17142-7. PubMed ID: 14769791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain.
    Gangolf M; Wins P; Thiry M; El Moualij B; Bettendorff L
    J Biol Chem; 2010 Jan; 285(1):583-94. PubMed ID: 19906644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role.
    Bettendorff L; Lakaye B; Kohn G; Wins P
    Metab Brain Dis; 2014 Dec; 29(4):1069-82. PubMed ID: 24590690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a natural thiamine adenine nucleotide.
    Bettendorff L; Wirtzfeld B; Makarchikov AF; Mazzucchelli G; Frédérich M; Gigliobianco T; Gangolf M; De Pauw E; Angenot L; Wins P
    Nat Chem Biol; 2007 Apr; 3(4):211-2. PubMed ID: 17334376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells.
    Gangolf M; Czerniecki J; Radermecker M; Detry O; Nisolle M; Jouan C; Martin D; Chantraine F; Lakaye B; Wins P; Grisar T; Bettendorff L
    PLoS One; 2010 Oct; 5(10):e13616. PubMed ID: 21049048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis and synthesis of thiamin triphosphate in bacteria.
    Nishimune T; Hayashi R
    J Nutr Sci Vitaminol (Tokyo); 1987 Apr; 33(2):113-27. PubMed ID: 3039089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, physico-chemical properties and effect of adenosine thiamine triphosphate on vitamin B
    Makarchikov AF; Kudyrka TG; Luchko TA; Yantsevich AV; Rusina IM; Makar AA; Kolas IK; Usanov SA
    Biochim Biophys Acta Gen Subj; 2022 Apr; 1866(4):130086. PubMed ID: 35016976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity.
    Tanaka T; Yamamoto D; Sato T; Tanaka S; Usui K; Manabe M; Aoki Y; Iwashima Y; Saito Y; Mino Y; Deguchi H
    J Nutr Sci Vitaminol (Tokyo); 2011; 57(2):192-6. PubMed ID: 21697640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels.
    Makarchikov AF; Wins P; Janssen E; Wieringa B; Grisar T; Bettendorff L
    Biochim Biophys Acta; 2002 Oct; 1592(2):117-21. PubMed ID: 12379473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on ATP: thiamine diphosphate phosphotransferase activity in rat brain.
    Schrijver J; Dias T; Hommes FA
    Neurochem Res; 1978 Dec; 3(6):699-709. PubMed ID: 216945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiamine triphosphate and thiamine triphosphatase activities: from bacteria to mammals.
    Makarchikov AF; Lakaye B; Gulyai IE; Czerniecki J; Coumans B; Wins P; Grisar T; Bettendorff L
    Cell Mol Life Sci; 2003 Jul; 60(7):1477-88. PubMed ID: 12943234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy metabolism in human retinal Müller cells.
    Winkler BS; Arnold MJ; Brassell MA; Puro DG
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3183-90. PubMed ID: 10967082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.