These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 2049287)
1. Heat resistance of ascospores of Byssochlamys nivea in milk and cream. Engel G; Teuber M Int J Food Microbiol; 1991 Feb; 12(2-3):225-33. PubMed ID: 2049287 [TBL] [Abstract][Full Text] [Related]
2. Inter- and intra-species variability in heat resistance and the effect of heat treatment intensity on subsequent growth of Byssochlamys fulva and Byssochlamys nivea. Santos JLP; Samapundo S; Gülay SM; Van Impe J; Sant'Ana AS; Devlieghere F Int J Food Microbiol; 2018 Aug; 279():80-87. PubMed ID: 29751279 [TBL] [Abstract][Full Text] [Related]
3. Heat resistance of Byssochlamys ascospores. Bayne HG; Michener HD Appl Environ Microbiol; 1979 Mar; 37(3):449-53. PubMed ID: 36842 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. Evelyn ; Silva FVM Int J Food Microbiol; 2015 Dec; 214():129-136. PubMed ID: 26280285 [TBL] [Abstract][Full Text] [Related]
5. Preparation of free heat-resistant ascospores from Byssochlamys asci. Michener HD; King AD Appl Microbiol; 1974 Apr; 27(4):671-3. PubMed ID: 4825977 [TBL] [Abstract][Full Text] [Related]
6. Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. Santos JLPD; Samapundo S; Biyikli A; Van Impe J; Akkermans S; Höfte M; Abatih EN; Sant'Ana AS; Devlieghere F Int J Food Microbiol; 2018 Sep; 281():72-81. PubMed ID: 29870893 [TBL] [Abstract][Full Text] [Related]
7. The effect of dimethyldicarbonate on vegetative growth and ascospores of Byssochlamys fulva suspended in apple juice and strawberry nectar. van der Riet WB; Botha A; Pinches SE Int J Food Microbiol; 1989 May; 8(2):95-102. PubMed ID: 2641891 [TBL] [Abstract][Full Text] [Related]
8. Modelling the effect of temperature and water activity on the growth rate and growth/no growth interface of Byssochlamys fulva and Byssochlamys nivea. Panagou EZ; Chelonas S; Chatzipavlidis I; Nychas GJ Food Microbiol; 2010 Aug; 27(5):618-27. PubMed ID: 20510780 [TBL] [Abstract][Full Text] [Related]
9. Heat resistance and the effects of continuous pasteurization on the inactivation of Byssochlamys fulva ascospores in clarified apple juice. Sant'ana AS; Rosenthal A; Massaguer PR J Appl Microbiol; 2009 Jul; 107(1):197-209. PubMed ID: 19298507 [TBL] [Abstract][Full Text] [Related]
10. Resistance of Neosartorya fischeri to wet and dry heat. Gómez MM; Pflug IJ; Busta FF J Pharm Sci Technol; 1994; 48(1):16-23. PubMed ID: 8004412 [TBL] [Abstract][Full Text] [Related]
11. Using extended Bigelow meta-regressions for modelling the effects of temperature, pH, °Brix on the inactivation of heat resistant moulds. Alvarenga VO; Gonzales-Barron U; do Prado Silva L; Cadavez V; Sant'Ana AS Int J Food Microbiol; 2021 Jan; 338():108985. PubMed ID: 33334619 [TBL] [Abstract][Full Text] [Related]
12. [Common presence on strawberries of ascospores of Byssochlamys nivea capable of producing patulin]. Percebois G; Basile AM; Schwertz A Mycopathologia; 1975 Dec; 57(2):109-11. PubMed ID: 1207720 [TBL] [Abstract][Full Text] [Related]
13. Heat inactivation of hepatitis A virus in dairy foods. Bidawid S; Farber JM; Sattar SA; Hayward S J Food Prot; 2000 Apr; 63(4):522-8. PubMed ID: 10772219 [TBL] [Abstract][Full Text] [Related]
14. Heat-resistance characteristics of ascospores of Eurotium chevalieri isolated from apricot juice. Kocakaya Yildiz A; Coksöyler N Nahrung; 2002 Feb; 46(1):28-30. PubMed ID: 11890051 [TBL] [Abstract][Full Text] [Related]
15. Thermal resistance of Listeria monocytogenes. Lemaire V; Cerf O; Audurier A Ann Rech Vet; 1989; 20(4):493-500. PubMed ID: 2515785 [TBL] [Abstract][Full Text] [Related]
16. Effect of oscillatory high hydrostatic pressure treatments on Byssochlamys nivea ascospores suspended in fruit juice concentrates. Palou E; López-Malo A; Barbosa-Cánovas GV; Welti-Chanes J; Davidson PM; Swanson BG Lett Appl Microbiol; 1998 Dec; 27(6):375-8. PubMed ID: 9871357 [TBL] [Abstract][Full Text] [Related]
17. Heat-resistant fungi of importance to the food and beverage industry. Tournas V Crit Rev Microbiol; 1994; 20(4):243-63. PubMed ID: 7857517 [TBL] [Abstract][Full Text] [Related]
18. Aspergilli with Neosartorya-type ascospores: heat resistance and effect of sugar concentration on growth and spoilage incidence in berry products. Berni E; Tranquillini R; Scaramuzza N; Brutti A; Bernini V Int J Food Microbiol; 2017 Oct; 258():81-88. PubMed ID: 28772258 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of various food preservatives in controlling the outgrowth of Byssochlamys nivea ascospores. Beuchat LR Mycopathologia; 1976 Oct; 59(3):175-8. PubMed ID: 11416 [TBL] [Abstract][Full Text] [Related]
20. Heat resistance of xerophilic fungi based on microscopical assessment of spore survival. Pitt JI; Christian JH Appl Microbiol; 1970 Nov; 20(5):682-6. PubMed ID: 5485080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]