These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 20492904)
1. Studies on the mechanism of modulation of [(3)H]noradrenaline release from rat hippocampal synaptosomes by GABA and benzodiazepine receptors. Fung SC; Fillenz M Neurochem Int; 1985; 7(1):95-101. PubMed ID: 20492904 [TBL] [Abstract][Full Text] [Related]
2. Effect of baclofen on in vitro noradrenaline release from rat hippocampus and cerebellum: an action at an ?(2)-adrenoceptor. Fung SC; Swarbrick MJ; Fillenz M Neurochem Int; 1985; 7(1):155-63. PubMed ID: 20492911 [TBL] [Abstract][Full Text] [Related]
3. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices. Cunningham J; Neal MJ Br J Pharmacol; 1981 Jul; 73(3):655-67. PubMed ID: 6166344 [TBL] [Abstract][Full Text] [Related]
4. [The effect of exogenous concentration of chlorine and calcium ions on GABA and bicuculline action on the K+ -induced release of H3-noradrenaline from synaptosomes]. Chiflikian MD; Armenian AR; Buniatian GKh Fiziol Zh SSSR Im I M Sechenova; 1983 May; 69(5):654-9. PubMed ID: 6873373 [TBL] [Abstract][Full Text] [Related]
5. Multiple effects of drugs acting on benzodiazepine receptors. Fung SC; Fillenz M Neurosci Lett; 1984 Sep; 50(1-3):203-7. PubMed ID: 6093011 [TBL] [Abstract][Full Text] [Related]
6. The role of pre-synaptic GABA and benzodiazepine receptors in the control of noradrenaline release in rat hippocampus. Fung SC; Fillenz M Neurosci Lett; 1983 Nov; 42(1):61-6. PubMed ID: 6318164 [TBL] [Abstract][Full Text] [Related]
7. The Na(+)-dependent release of endogenous dopamine and noradrenaline from rat brain synaptosomes. Okada M; Mine K; Fujiwara M J Pharmacol Exp Ther; 1990 Mar; 252(3):1283-8. PubMed ID: 2108240 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of zinc on native GABA(A) receptor function in rat hippocampus and cerebellum. Schmid G; Chittolini R; Raiteri L; Bonanno G Neurochem Int; 1999 May; 34(5):399-405. PubMed ID: 10397368 [TBL] [Abstract][Full Text] [Related]
9. GABA release provoked by disturbed Na(+), K(+) and Ca(2+) homeostasis in cerebellar nerve endings: roles of Ca(2+) channels, Na(+)/Ca(2+) exchangers and GAT1 transporter reversal. Romei C; Sabolla C; Raiteri L Neurochem Int; 2014 Jun; 72():1-9. PubMed ID: 24726769 [TBL] [Abstract][Full Text] [Related]
10. Functional evidence for two native GABAA receptor subtypes in adult rat hippocampus and cerebellum. Schmid G; Bonanno G; Raiteri M Neuroscience; 1996 Aug; 73(3):697-704. PubMed ID: 8809791 [TBL] [Abstract][Full Text] [Related]
11. The actions of barbiturates on release of noradrenaline from rat hippocampal synaptosomes. Fung SC; Fillenz M Neuropharmacology; 1984 Sep; 23(9):1113-6. PubMed ID: 6514147 [TBL] [Abstract][Full Text] [Related]
12. A new GABA-A receptor subtype coupled with Ca++/Cl- synporter modulates aminergic release from rat brain neuron terminals. Cerrito F; Aloisi G; Arminio P; Fanini D J Neurosci Res; 1998 Jan; 51(1):15-22. PubMed ID: 9452305 [TBL] [Abstract][Full Text] [Related]
13. Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Clarke PB; Reuben M Br J Pharmacol; 1996 Feb; 117(4):595-606. PubMed ID: 8646402 [TBL] [Abstract][Full Text] [Related]
14. Enhancement by GABA of the stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells. Kitayama S; Morita K; Dohi T; Tsujimoto A Naunyn Schmiedebergs Arch Pharmacol; 1990 May; 341(5):414-8. PubMed ID: 2164162 [TBL] [Abstract][Full Text] [Related]
15. Muscarinic receptor activation inhibits both release and synthesis of noradrenaline in rat hippocampal synaptosomes. Birch PJ; Fillenz M Neurochem Int; 1986; 8(2):171-7. PubMed ID: 20493044 [TBL] [Abstract][Full Text] [Related]
16. Neurosteroids may differentially affect the function of two native GABA(A) receptor subtypes in the rat brain. Schmid G; Sala R; Bonanno G; Raiteri M Naunyn Schmiedebergs Arch Pharmacol; 1998 Apr; 357(4):401-7. PubMed ID: 9606025 [TBL] [Abstract][Full Text] [Related]
17. Does extracellular calcium determine what pool of GABA is the target for alpha-latrotoxin? Storchak LG; Linetska MV; Himmelreich NH Neurochem Int; 2002 Apr; 40(5):387-95. PubMed ID: 11821145 [TBL] [Abstract][Full Text] [Related]
18. Multiple components of synaptosomal [3H]-gamma-aminobutyric acid release resolved by a rapid superfusion system. Turner TJ; Goldin SM Biochemistry; 1989 Jan; 28(2):586-93. PubMed ID: 2653424 [TBL] [Abstract][Full Text] [Related]
19. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function. Pittaluga A; Bonfanti A; Raiteri M Naunyn Schmiedebergs Arch Pharmacol; 1997 Jul; 356(1):29-38. PubMed ID: 9228187 [TBL] [Abstract][Full Text] [Related]
20. GABAergic modulation of catecholamine release from cultured bovine adrenal chromaffin cells. Evidence for the involvement of Cl(-)-dependent Ca2+ entry. Kitayama S; Morita K; Dohi T; Tsujimoto A Naunyn Schmiedebergs Arch Pharmacol; 1990 May; 341(5):419-24. PubMed ID: 1694971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]