These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20492904)

  • 21. Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release.
    Cotman CW; Haycock JW; White WF
    J Physiol; 1976 Jan; 254(2):475-505. PubMed ID: 765446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noradrenaline release in the rat vena cava is inhibited by gamma-aminobutyric acid via GABAB receptors but not affected by histamine.
    Schneider D; Schlicker E; Malinowska B; Molderings G
    Br J Pharmacol; 1991 Oct; 104(2):478-82. PubMed ID: 1665738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Ca(2+)-channels responsible for K(+)-evoked [(3)H]noradrenaline release from rat brain cortex synaptosomes and their response to amyotrophic lateral sclerosis IgGs.
    Grassi C; Martire M; Altobelli D; Azzena GB; Preziosi P
    Exp Neurol; 1999 Oct; 159(2):520-7. PubMed ID: 10506523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of gamma-aminobutyric acid on K+-induced and Ca++-dependent release of H3-noradrenaline from synaptosomes of the meso-diencephalic region of the rat brain].
    Chiflikian MD; Armenian AR; Buniatian GKh
    Fiziol Zh SSSR Im I M Sechenova; 1981 Jul; 67(7):1001-6. PubMed ID: 7286314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of neuronal Ca(2+) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices.
    Fink K; Meder W; Dooley DJ; Göthert M
    Br J Pharmacol; 2000 Jun; 130(4):900-6. PubMed ID: 10864898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presynaptic mGlu7 receptors control GABA release in mouse hippocampus.
    Summa M; Di Prisco S; Grilli M; Usai C; Marchi M; Pittaluga A
    Neuropharmacology; 2013 Mar; 66():215-24. PubMed ID: 22564442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionophore A23187, verapamil, protonophores, and veratridine influence the release of gamma-aminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium.
    Sihra TS; Scott IG; Nicholls DG
    J Neurochem; 1984 Dec; 43(6):1624-30. PubMed ID: 6436439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effects of amphetamine on potassium-stimulated release of [3H]dopamine from striatal slices and synaptosomes.
    Bowyer JF; Masserano JM; Weiner N
    J Pharmacol Exp Ther; 1987 Jan; 240(1):177-86. PubMed ID: 3100768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of GABA release by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate receptors in matrix-enriched areas of the rat striatum.
    Galli T; Desce JM; Artaud F; Kemel ML; Chéramy A; Glowinski J
    Neuroscience; 1992 Oct; 50(4):769-80. PubMed ID: 1280348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3H-ACh release from guinea pig gallbladder evoked by GABA through the bicuculline-sensitive GABA receptor.
    Saito N; Taniyama K; Tanaka C
    Naunyn Schmiedebergs Arch Pharmacol; 1984 May; 326(1):45-8. PubMed ID: 6088998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site(s) and ionic basis of alpha-autoinhibition and facilitation of "3H'noradrenaline secretion in guinea-pig vas deferens.
    Alberts P; Bartfai T; Stjärne L
    J Physiol; 1981 Mar; 312():297-334. PubMed ID: 6267264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of depolarisation-evoked [(3)H]noradrenaline release from SH-SYFY human neuroblastoma cells by muscarinic (M1) receptors is not mediated by changes in [Ca(2+)].
    Roberts DJ; Khan N; McDonald RL; Webster NJ; Peers C; Vaughan PF
    Brain Res Mol Brain Res; 2001 Feb; 87(1):81-91. PubMed ID: 11223162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insulin-like growth factor-I inhibits endogenous acetylcholine release from the rat hippocampal formation: possible involvement of GABA in mediating the effects.
    Seto D; Zheng WH; McNicoll A; Collier B; Quirion R; Kar S
    Neuroscience; 2002; 115(2):603-12. PubMed ID: 12421625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals.
    Westphalen RI; Hemmings HC
    J Pharmacol Exp Ther; 2003 Mar; 304(3):1188-96. PubMed ID: 12604696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GABA transporters mediate glycine release from cerebellum nerve endings: roles of Ca(2+)channels, mitochondrial Na(+)/Ca(2+) exchangers, vesicular GABA/glycine transporters and anion channels.
    Romei C; Raiteri M; Raiteri L
    Neurochem Int; 2012 Jul; 61(2):133-40. PubMed ID: 22579572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycine stimulates [3H]noradrenaline release by activating a strychnine-sensitive receptor present in rat hippocampus.
    Raiteri M; Fontana G; Fedele E
    Eur J Pharmacol; 1990 Aug; 184(2-3):239-50. PubMed ID: 2150375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histamine H3 receptor activation inhibits glutamate release from rat striatal synaptosomes.
    Molina-Hernández A; Nuñez A; Sierra JJ; Arias-Montaño JA
    Neuropharmacology; 2001 Dec; 41(8):928-34. PubMed ID: 11747897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro.
    Blaustein MP
    J Physiol; 1975 Jun; 247(3):617-55. PubMed ID: 238033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neocortical GABA release at high intracellular sodium and low extracellular calcium: an anti-seizure mechanism.
    Rassner MP; Moser A; Follo M; Joseph K; van Velthoven-Wurster V; Feuerstein TJ
    J Neurochem; 2016 Apr; 137(2):177-89. PubMed ID: 26821584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a gamma-aminobutyric acidB (GABAB) receptor subtype.
    Pende M; Lanza M; Bonanno G; Raiteri M
    Brain Res; 1993 Feb; 604(1-2):325-30. PubMed ID: 8096158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.