These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20492911)

  • 21. Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro.
    Chen K; Li HZ; Ye N; Zhang J; Wang JJ
    Brain Res Bull; 2005 Oct; 67(4):310-8. PubMed ID: 16182939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GABA
    Yamaguchi N; Mimura K; Okada S
    Eur J Pharmacol; 2019 Apr; 848():88-95. PubMed ID: 30685430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GABAergic modulation of hippocampal glutamatergic neurons: an in vivo microdialysis study.
    Tanaka S; Tsuchida A; Kiuchi Y; Oguchi K; Numazawa S; Yoshida T
    Eur J Pharmacol; 2003 Mar; 465(1-2):61-7. PubMed ID: 12650834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antagonistic effect of delta-aminovaleric acid on bicuculline-insensitive gamma-aminobutyric acid B (GABA B) sites in the rat's brain.
    Nakahiro M; Saito K; Yamada I; Yoshida H
    Neurosci Lett; 1985 Jun; 57(3):263-6. PubMed ID: 2993969
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro.
    Newberry NR; Nicoll RA
    J Physiol; 1985 Mar; 360():161-85. PubMed ID: 3989713
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GABAB-receptor-mediated inhibition of calcium signals in isolated nerve terminals.
    Tareilus E; Schoch J; Breer H
    Neurochem Int; 1994 Apr; 24(4):349-61. PubMed ID: 8061599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GABA mediation of the dual effects of somatostatin on guinea pig ileal myenteric cholinergic transmission.
    Roberts DJ; Hasler WL; Owyang C
    Am J Physiol; 1993 May; 264(5 Pt 1):G953-60. PubMed ID: 8098912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carriers for GABA and noradrenaline uptake coexist on the same nerve terminal in rat hippocampus.
    Bonanno G; Raiteri M
    Eur J Pharmacol; 1987 Apr; 136(3):303-10. PubMed ID: 3038566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prenatal diazepam exposure functionally alters the GABA(A) receptor that modulates [3H]noradrenaline release from rat hippocampal synaptosomes.
    Martire M; Altobelli D; Cannizzaro C; Maurizi S; Preziosi P
    Dev Neurosci; 2002; 24(1):71-8. PubMed ID: 12145412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of glutamate and aspartate release from slices of the hippocampal CA1 area: effects of adenosine and baclofen.
    Burke SP; Nadler JV
    J Neurochem; 1988 Nov; 51(5):1541-51. PubMed ID: 2902197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of GABA-ergic system on clonidine analgesia in rats.
    Przesmycki K; Dzieciuch J; Kleinrok Z
    Pol J Pharmacol; 1994; 46(5):409-15. PubMed ID: 7894527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro.
    Waldmeier PC; Wicki P; Feldtrauer JJ; Baumann PA
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Mar; 337(3):289-95. PubMed ID: 2839779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Baclofen-impairment of memory retention in rats: possible interaction with adrenoceptor mechanism(s).
    Zarrindast MR; Khodjastehfar E; Oryan S; Torkaman-Boutorabi A
    Eur J Pharmacol; 2001 Jan; 411(3):283-8. PubMed ID: 11164386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of [3H]GABA release from strips of guinea pig urinary bladder.
    Shirakawa J; Taniyama K; Iwai S; Tanaka C
    Am J Physiol; 1988 Dec; 255(6 Pt 2):R888-93. PubMed ID: 2904773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 5-HT1A, 5-HT2, and GABAB receptors interact to modulate neurotransmitter release probability in layer 2/3 somatosensory rat cortex as evaluated by the paired pulse protocol.
    Torres-Escalante JL; Barral JA; Ibarra-Villa MD; Pérez-Burgos A; Góngora-Alfaro JL; Pineda JC
    J Neurosci Res; 2004 Oct; 78(2):268-78. PubMed ID: 15378508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. gamma-Aminobutyric acid and glycine modulate each other's release through heterocarriers sited on the releasing axon terminals of rat CNS.
    Raiteri M; Bonanno G; Pende M
    J Neurochem; 1992 Oct; 59(4):1481-9. PubMed ID: 1402899
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Type A and B gaba receptors mediate inhibition of acetylcholine release from cholinergic nerve terminals in the superior cervical ganglion of rat.
    Farkas Z; Kása P; Balcar VJ; Joó F; Wolff JR
    Neurochem Int; 1986; 8(4):565-72. PubMed ID: 20493090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes.
    Bowery NG; Hill DR; Hudson AL
    Br J Pharmacol; 1983 Jan; 78(1):191-206. PubMed ID: 6297646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a gamma-aminobutyric acidB (GABAB) receptor subtype.
    Pende M; Lanza M; Bonanno G; Raiteri M
    Brain Res; 1993 Feb; 604(1-2):325-30. PubMed ID: 8096158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement by GABA of the stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells.
    Kitayama S; Morita K; Dohi T; Tsujimoto A
    Naunyn Schmiedebergs Arch Pharmacol; 1990 May; 341(5):414-8. PubMed ID: 2164162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.