BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 20493272)

  • 1. Low frequency oscillations in rat posterior parietal cortex are differentially activated by cues and distractors.
    Broussard JI; Givens B
    Neurobiol Learn Mem; 2010 Sep; 94(2):191-8. PubMed ID: 20493272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting visual attention away from fixation is specifically associated with alpha band activity over ipsilateral parietal regions.
    Cosmelli D; López V; Lachaux JP; López-Calderón J; Renault B; Martinerie J; Aboitiz F
    Psychophysiology; 2011 Mar; 48(3):312-22. PubMed ID: 20663090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human cortical EEG rhythms during long-term episodic memory task. A high-resolution EEG study of the HERA model.
    Babiloni C; Babiloni F; Carducci F; Cappa S; Cincotti F; Del Percio C; Miniussi C; Moretti DV; Pasqualetti P; Rossi S; Sosta K; Rossini PM
    Neuroimage; 2004 Apr; 21(4):1576-84. PubMed ID: 15050581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Task-specific sensory and motor preparatory activation revealed by contingent magnetic variation.
    Gómez CM; Fernández A; Maestú F; Amo C; González-Rosa JJ; Vaquero E; Ortiz T
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):59-68. PubMed ID: 15325413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.
    Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T
    Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlates of stimulus-response congruence in the posterior parietal cortex.
    Stoet G; Snyder LH
    J Cogn Neurosci; 2007 Feb; 19(2):194-203. PubMed ID: 17280509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications of cognitive and motor tasks affect the occurrence of event-related potentials in the human cortex.
    Rektor I; Brázdil M; Nestrasil I; Bares M; Daniel P
    Eur J Neurosci; 2007 Sep; 26(5):1371-80. PubMed ID: 17767513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic optimization of cue-evoked parietal activity during challenged attentional performance.
    Broussard JI; Karelina K; Sarter M; Givens B
    Eur J Neurosci; 2009 Apr; 29(8):1711-22. PubMed ID: 19419433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task.
    Jolicoeur P; Brisson B; Robitaille N
    Brain Res; 2008 Jun; 1215():160-72. PubMed ID: 18482718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P300 and alpha event-related desynchronization (ERD).
    Yordanova J; Kolev V; Polich J
    Psychophysiology; 2001 Jan; 38(1):143-52. PubMed ID: 11321615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fronto-parietal networks activation during the contingent negative variation period.
    Gómez CM; Flores A; Ledesma A
    Brain Res Bull; 2007 Jun; 73(1-3):40-7. PubMed ID: 17499635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nature of switch cost: task set configuration or carry-over effect?
    Hsieh S; Liu LC
    Brain Res Cogn Brain Res; 2005 Feb; 22(2):165-75. PubMed ID: 15653291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociation of attention and intention in human posterior parietal cortex: an fMRI study.
    Hu S; Bu Y; Song Y; Zhen Z; Liu J
    Eur J Neurosci; 2009 May; 29(10):2083-91. PubMed ID: 19453626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention.
    Rihs TA; Michel CM; Thut G
    Neuroimage; 2009 Jan; 44(1):190-9. PubMed ID: 18793732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The activation of attentional networks.
    Fan J; McCandliss BD; Fossella J; Flombaum JI; Posner MI
    Neuroimage; 2005 Jun; 26(2):471-9. PubMed ID: 15907304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ERPs in anterior and posterior regions associated with duration and size discriminations.
    Gontier E; Paul I; Le Dantec C; Pouthas V; Jean-Marie G; Bernard C; Lalonde R; Rebaï M
    Neuropsychology; 2009 Sep; 23(5):668-78. PubMed ID: 19702420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-related desynchronization to contingent negative variation and self-paced movement paradigms in Parkinson's disease.
    Magnani G; Cursi M; Leocani L; Volonté MA; Locatelli T; Elia A; Comi G
    Mov Disord; 1998 Jul; 13(4):653-60. PubMed ID: 9686770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.