BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20493300)

  • 1. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods.
    Gou XC; Liu J; Zhang HL
    Anal Chim Acta; 2010 Jun; 668(2):208-14. PubMed ID: 20493300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique.
    Huang CZ; Liao QG; Gan LH; Guo FL; Li YF
    Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex.
    Zhao Y; Kan ZY; Zeng ZX; Hao YH; Chen H; Tan Z
    J Am Chem Soc; 2004 Oct; 126(41):13255-64. PubMed ID: 15479079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods.
    He W; Huang CZ; Li YF; Xie JP; Yang RG; Zhou PF; Wang J
    Anal Chem; 2008 Nov; 80(22):8424-30. PubMed ID: 18937420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay.
    Jin Y; Li H; Bai J
    Anal Chem; 2009 Jul; 81(14):5709-15. PubMed ID: 19527045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human telomeric G-quadruplex formed from duplex under near physiological conditions: spectroscopic evidence and kinetics.
    Zhou J; Wei C; Jia G; Wang X; Feng Z; Li C
    Biochimie; 2009 Sep; 91(9):1104-11. PubMed ID: 19524012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual observation of G-quadruplex DNA with the label-free fluorescent probe silole with aggregation-induced emission.
    Huang J; Wang M; Zhou Y; Weng X; Shuai L; Zhou X; Zhang D
    Bioorg Med Chem; 2009 Nov; 17(22):7743-8. PubMed ID: 19822430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition.
    Hu D; Pu F; Huang Z; Ren J; Qu X
    Chemistry; 2010 Feb; 16(8):2605-10. PubMed ID: 20077530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural diversity and extreme stability of unimolecular Oxytricha nova telomeric G-quadruplex.
    Lee JY; Yoon J; Kihm HW; Kim DS
    Biochemistry; 2008 Mar; 47(11):3389-96. PubMed ID: 18298084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of unfolding the human telomeric DNA quadruplex using a PNA trap.
    Green JJ; Ying L; Klenerman D; Balasubramanian S
    J Am Chem Soc; 2003 Apr; 125(13):3763-7. PubMed ID: 12656607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free and real-time sequence specific DNA detection based on supramolecular self-assembly.
    Tang Y; Achyuthan KE; Whitten DG
    Langmuir; 2010 May; 26(9):6832-7. PubMed ID: 20030336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine-aptamer recognition-induced assembly of gold nanorods and a highly sensitive plasmon resonance coupling assay of adenosine in the brain of model SD rat.
    Wang J; Zhang P; Li JY; Chen LQ; Huang CZ; Li YF
    Analyst; 2010 Nov; 135(11):2826-31. PubMed ID: 20830327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying G-quadruplex-binding ligands using DNA-functionalized gold nanoparticles.
    Qiao Y; Deng J; Jin Y; Chen G; Wang L
    Analyst; 2012 Apr; 137(7):1663-8. PubMed ID: 22331167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human telomeric DNA sequence-specific cleaving by G-quadruplex formation.
    Xu Y; Suzuki Y; Lönnberg T; Komiyama M
    J Am Chem Soc; 2009 Mar; 131(8):2871-4. PubMed ID: 19209856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective recognition of G-qQuadruplex telomeric DNA by a bis(quinacridine) macrocycle.
    Teulade-Fichou MP; Carrasco C; Guittat L; Bailly C; Alberti P; Mergny JL; David A; Lehn JM; Wilson WD
    J Am Chem Soc; 2003 Apr; 125(16):4732-40. PubMed ID: 12696891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing telomeric G-quadruplex DNA structures in cells with in vitro generated single-chain antibody fragments.
    Schaffitzel C; Postberg J; Paeschke K; Lipps HJ
    Methods Mol Biol; 2010; 608():159-81. PubMed ID: 20012422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic resolution of bimolecular hybridization versus intramolecular folding in nucleic acids by surface plasmon resonance: application to G-quadruplex/duplex competition in human c-myc promoter.
    Halder K; Chowdhury S
    Nucleic Acids Res; 2005; 33(14):4466-74. PubMed ID: 16085756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics.
    Hong Y; Häussler M; Lam JW; Li Z; Sin KK; Dong Y; Tong H; Liu J; Qin A; Renneberg R; Tang BZ
    Chemistry; 2008; 14(21):6428-37. PubMed ID: 18512826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of [Ru(bpy)2(dppz)]2+ with human telomeric DNA: preferential binding to G-quadruplexes over i-motif.
    Shi S; Geng X; Zhao J; Yao T; Wang C; Yang D; Zheng L; Ji L
    Biochimie; 2010 Apr; 92(4):370-7. PubMed ID: 20096325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.