These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 20493523)
1. Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Bae BC; Na K Biomaterials; 2010 Aug; 31(24):6325-35. PubMed ID: 20493523 [TBL] [Abstract][Full Text] [Related]
2. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Li F; Bae BC; Na K Bioconjug Chem; 2010 Jul; 21(7):1312-20. PubMed ID: 20586473 [TBL] [Abstract][Full Text] [Related]
3. Photodynamic therapy of fullerene modified with pullulan on hepatoma cells. Liu J; Tabata Y J Drug Target; 2010 Sep; 18(8):602-10. PubMed ID: 20180750 [TBL] [Abstract][Full Text] [Related]
4. Acid pH-activated glycol chitosan/fullerene nanogels for efficient tumor therapy. Kim S; Lee DJ; Kwag DS; Lee UY; Youn YS; Lee ES Carbohydr Polym; 2014 Jan; 101():692-8. PubMed ID: 24299827 [TBL] [Abstract][Full Text] [Related]
5. Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells. Xia J; Zhang L; Qian M; Bao Y; Wang J; Li Y J Colloid Interface Sci; 2017 Jul; 498():170-181. PubMed ID: 28324723 [TBL] [Abstract][Full Text] [Related]
6. Polymeric photosensitizer-embedded self-expanding metal stent for repeatable endoscopic photodynamic therapy of cholangiocarcinoma. Bae BC; Yang SG; Jeong S; Lee DH; Na K; Kim JM; Costamagna G; Kozarek RA; Isayama H; Deviere J; Seo DW; Nageshwar Reddy D Biomaterials; 2014 Oct; 35(30):8487-95. PubMed ID: 25043500 [TBL] [Abstract][Full Text] [Related]
7. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery. Yang J; Yao MH; Wen L; Song JT; Zhang MZ; Zhao YD; Liu B Nanoscale; 2014 Oct; 6(19):11282-92. PubMed ID: 25130175 [TBL] [Abstract][Full Text] [Related]
8. GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. Li L; Nurunnabi ; Nafiujjaman ; Lee YK; Huh KM J Control Release; 2013 Oct; 171(2):241-50. PubMed ID: 23867285 [TBL] [Abstract][Full Text] [Related]
9. Antitumor effect of photodynamic therapy with a novel targeted photosensitizer on cervical carcinoma. Li PX; Mu JH; Xiao HL; Li DH Oncol Rep; 2015 Jan; 33(1):125-32. PubMed ID: 25376180 [TBL] [Abstract][Full Text] [Related]
10. FRET quenching of photosensitizer singlet oxygen generation. Lovell JF; Chen J; Jarvi MT; Cao WG; Allen AD; Liu Y; Tidwell TT; Wilson BC; Zheng G J Phys Chem B; 2009 Mar; 113(10):3203-11. PubMed ID: 19708269 [TBL] [Abstract][Full Text] [Related]
11. Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. Chen K; Preuss A; Hackbarth S; Wacker M; Langer K; Röder B J Photochem Photobiol B; 2009 Jul; 96(1):66-74. PubMed ID: 19442534 [TBL] [Abstract][Full Text] [Related]
12. Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy. Schneider R; Schmitt F; Frochot C; Fort Y; Lourette N; Guillemin F; Müller JF; Barberi-Heyob M Bioorg Med Chem; 2005 Apr; 13(8):2799-808. PubMed ID: 15781391 [TBL] [Abstract][Full Text] [Related]
13. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Zheng G; Chen J; Stefflova K; Jarvi M; Li H; Wilson BC Proc Natl Acad Sci U S A; 2007 May; 104(21):8989-94. PubMed ID: 17502620 [TBL] [Abstract][Full Text] [Related]
14. Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Hamblin MR; Miller JL; Rizvi I; Ortel B; Maytin EV; Hasan T Cancer Res; 2001 Oct; 61(19):7155-62. PubMed ID: 11585749 [TBL] [Abstract][Full Text] [Related]
15. Dithiaporphyrin derivatives as photosensitizers in membranes and cells. Minnes R; Weitman H; You Y; Detty MR; Ehrenberg B J Phys Chem B; 2008 Mar; 112(10):3268-76. PubMed ID: 18278897 [TBL] [Abstract][Full Text] [Related]
16. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Jin CS; Cui L; Wang F; Chen J; Zheng G Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930 [TBL] [Abstract][Full Text] [Related]
17. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Lee SJ; Koo H; Lee DE; Min S; Lee S; Chen X; Choi Y; Leary JF; Park K; Jeong SY; Kwon IC; Kim K; Choi K Biomaterials; 2011 Jun; 32(16):4021-9. PubMed ID: 21376388 [TBL] [Abstract][Full Text] [Related]
18. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. Jang B; Park JY; Tung CH; Kim IH; Choi Y ACS Nano; 2011 Feb; 5(2):1086-94. PubMed ID: 21244012 [TBL] [Abstract][Full Text] [Related]
19. Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: Synthesis and photophysical properties. Stallivieri A; Colombeau L; Jetpisbayeva G; Moussaron A; Myrzakhmetov B; Arnoux P; Acherar S; Vanderesse R; Frochot C Bioorg Med Chem; 2017 Jan; 25(1):1-10. PubMed ID: 27769669 [TBL] [Abstract][Full Text] [Related]
20. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating. Boix-Garriga E; Acedo P; Casadó A; Villanueva A; Stockert JC; Cañete M; Mora M; Sagristá ML; Nonell S Nanotechnology; 2015 Sep; 26(36):365104. PubMed ID: 26293792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]