These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 20493626)

  • 1. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.
    Fairbairn EM; Americano BB; Cordeiro GC; Paula TP; Toledo Filho RD; Silvoso MM
    J Environ Manage; 2010 Sep; 91(9):1864-71. PubMed ID: 20493626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement.
    Sales A; Lima SA
    Waste Manag; 2010 Jun; 30(6):1114-22. PubMed ID: 20163947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Options for achieving a 50% cut in industrial carbon emissions by 2050.
    Allwood JM; Cullen JM; Milford RL
    Environ Sci Technol; 2010 Mar; 44(6):1888-94. PubMed ID: 20121181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of waste recycling coal bottom ash and sugarcane bagasse ash as cement and sand replacement material to produce sustainable concrete.
    Bheel N; Khoso S; Baloch MH; Benjeddou O; Alwetaishi M
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):52399-52411. PubMed ID: 35258727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying improvement potentials in cement production with life cycle assessment.
    Boesch ME; Hellweg S
    Environ Sci Technol; 2010 Dec; 44(23):9143-9. PubMed ID: 21047057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.
    Chavez-Rodriguez MF; Nebra SA
    Environ Sci Technol; 2010 Dec; 44(24):9252-7. PubMed ID: 21105738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials.
    Xu Q; Ji T; Gao SJ; Yang Z; Wu N
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30583562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the co-benefits of energy-efficiency policies: a case study of the cement industry in Shandong Province, China.
    Hasanbeigi A; Lobscheid A; Lu H; Price L; Dai Y
    Sci Total Environ; 2013 Aug; 458-460():624-36. PubMed ID: 23707868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry.
    Anand S; Vrat P; Dahiya RP
    J Environ Manage; 2006 Jun; 79(4):383-98. PubMed ID: 16307842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy conservation and CO2 emission reductions due to recycling in Brazil.
    Pimenteira CA; Pereira AS; Oliveira LB; Rosa LP; Reis MM; Henriques RM
    Waste Manag; 2004; 24(9):889-97. PubMed ID: 15504666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating CO(2)-credits through landfill in situ aeration.
    Ritzkowski M; Stegmann R
    Waste Manag; 2010 Apr; 30(4):702-6. PubMed ID: 20022235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prescribed fire as a means of reducing forest carbon emissions in the western United States.
    Wiedinmyer C; Hurteau MD
    Environ Sci Technol; 2010 Mar; 44(6):1926-32. PubMed ID: 20148581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and application of a methodology for a clean development mechanism to avoid methane emissions in closed landfills.
    Janke L; Lima AO; Millet M; Radetski CM
    Environ Technol; 2013; 34(17-20):2607-16. PubMed ID: 24527622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.
    Lee TC; Rao MK
    Waste Manag; 2009 Jun; 29(6):1952-9. PubMed ID: 19216067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel.
    Teixeira SR; Pena AF; Miguel AG
    Waste Manag; 2010 May; 30(5):804-7. PubMed ID: 20133118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon sinks and emissions trading under the Kyoto Protocol: a legal analysis.
    Bettelheim EC; D'Origny G
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1827-51. PubMed ID: 12460501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on fresh, mechanical properties and embodied carbon of concrete blended with sugarcane bagasse ash, metakaolin, and millet husk ash as ternary cementitious material.
    Bheel N; Ali MOA; Tafsirojjaman ; Khahro SH; Keerio MA
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5224-5239. PubMed ID: 34417691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.
    Litynski JT; Klara SM; McIlvried HG; Srivastava RD
    Environ Int; 2006 Jan; 32(1):128-44. PubMed ID: 16054694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials.
    Castaldelli VN; Akasaki JL; Melges JLP; Tashima MM; Soriano L; Borrachero MV; Monzó J; Payá J
    Materials (Basel); 2013 Jul; 6(8):3108-3127. PubMed ID: 28811425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.