These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Neuromorphic hardware databases for exploring structure-function relationships in the brain. Breslin C; O'Lenskie A Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701 [TBL] [Abstract][Full Text] [Related]
4. Modelling the world in real time: how robots engineer information. Davison AJ Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2875-90. PubMed ID: 14667303 [TBL] [Abstract][Full Text] [Related]
5. Today's machine vision systems. Jordan L Med Device Technol; 2009 Sep; 20(5):42. PubMed ID: 19852182 [TBL] [Abstract][Full Text] [Related]
7. Grounding vision through experimental manipulation. Fitzpatrick P; Metta G Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2165-85. PubMed ID: 14599314 [TBL] [Abstract][Full Text] [Related]
8. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots. Wright CH; Barrett SF; Pack DJ Biomed Sci Instrum; 2005; 41():253-8. PubMed ID: 15850114 [TBL] [Abstract][Full Text] [Related]
9. Real-time classification of datasets with hardware embedded neuromorphic neural networks. Bako L Brief Bioinform; 2010 May; 11(3):348-63. PubMed ID: 20053732 [TBL] [Abstract][Full Text] [Related]
10. A visually guided collision warning system with a neuromorphic architecture. Okuno H; Yagi T Neural Netw; 2008 Dec; 21(10):1431-8. PubMed ID: 19028077 [TBL] [Abstract][Full Text] [Related]
11. Assessment of bioinspired models for pattern recognition in biomimetic systems. Pioggia G; Ferro M; Francesco FD; Ahluwalia A; De Rossi D Bioinspir Biomim; 2008 Mar; 3():016004. PubMed ID: 18364563 [TBL] [Abstract][Full Text] [Related]
13. Time-to-Collision estimation from motion based on primate visual processing. Galbraith JM; Kenyon GT; Ziolkowski RW IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1279-91. PubMed ID: 16119266 [TBL] [Abstract][Full Text] [Related]
14. Incremental refinement of image salient-point detection. Andreopoulos Y; Patras I IEEE Trans Image Process; 2008 Sep; 17(9):1685-99. PubMed ID: 18713674 [TBL] [Abstract][Full Text] [Related]
15. Mobile robotic sensors for perimeter detection and tracking. Clark J; Fierro R ISA Trans; 2007 Feb; 46(1):3-13. PubMed ID: 17275822 [TBL] [Abstract][Full Text] [Related]
16. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments. Tani J; Nishimoto R; Paine RW Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423 [TBL] [Abstract][Full Text] [Related]
17. Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Quinn M; Smith L; Mayley G; Husbands P Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2321-43. PubMed ID: 14599322 [TBL] [Abstract][Full Text] [Related]
18. Energy limitation as a selective pressure on the evolution of sensory systems. Niven JE; Laughlin SB J Exp Biol; 2008 Jun; 211(Pt 11):1792-804. PubMed ID: 18490395 [TBL] [Abstract][Full Text] [Related]
19. A robust classifier combined with an auto-associative network for completing partly occluded images. Takahashi T; Kurita T Neural Netw; 2005 Sep; 18(7):958-66. PubMed ID: 15936926 [TBL] [Abstract][Full Text] [Related]
20. Toward the neurocomputer: image processing and pattern recognition with neuronal cultures. Ruaro ME; Bonifazi P; Torre V IEEE Trans Biomed Eng; 2005 Mar; 52(3):371-83. PubMed ID: 15759567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]