These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20493685)

  • 1. Integral valorization of tagasaste (Chamaecytisus proliferus) under hydrothermal and pulp processing.
    Alfaro A; López F; Pérez A; García JC; Rodríguez A
    Bioresour Technol; 2010 Oct; 101(19):7635-40. PubMed ID: 20493685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integral valorization of two legumes by autohydrolysis and organosolv delignification.
    Alfaro A; Rivera A; Pérez A; Yáñez R; García JC; López F
    Bioresour Technol; 2009 Jan; 100(1):440-5. PubMed ID: 18694639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integral valorization of Leucaena diversifolia by hydrothermal and pulp processing.
    Feria MJ; Alfaro A; López F; Pérez A; García JC; Rivera A
    Bioresour Technol; 2012 Jan; 103(1):381-8. PubMed ID: 22019263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal treatment and ethanol pulping of sunflower stalks.
    Caparrós S; Ariza J; López F; Nacimiento JA; Garrote G; Jiménez L
    Bioresour Technol; 2008 Mar; 99(5):1368-72. PubMed ID: 17369038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of Tagasaste (Chamaecytisus proliferus) from different origins for biomass and paper production.
    García MM; López F; Alfaro A; Ariza J; Tapias R
    Bioresour Technol; 2008 Jun; 99(9):3451-7. PubMed ID: 17881228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus, and of their ethyleneglycol pulps.
    Jiménez L; Pérez A; de la Torre MJ; Moral A; Serrano L
    Bioresour Technol; 2007 Dec; 98(18):3487-90. PubMed ID: 17204420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biorefinery process for production of paper and oligomers from Leucaena leucocephala K360 with or without prior autohydrolysis.
    Feria MJ; García JC; Díaz MJ; Fernández M; López F
    Bioresour Technol; 2012 Dec; 126():64-70. PubMed ID: 23073090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethyleneglycol pulp from tagasaste.
    Jiménez L; Pérez A; De la Torre MJ; Rodríguez A; Angulo V
    Bioresour Technol; 2008 May; 99(7):2170-6. PubMed ID: 17644377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.
    Jiménez L; Ramos E; Rodríguez A; De la Torre MJ; Ferrer JL
    Bioresour Technol; 2005 Jun; 96(9):977-83. PubMed ID: 15668195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural fuzzy model applied to ethylene-glycol pulping of non-wood raw materials.
    Rodríguez A; Pérez A; de la Torre MJ; Ramos E; Jiménez L
    Bioresour Technol; 2008 Mar; 99(5):965-74. PubMed ID: 17462885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tagasaste, leucaena and paulownia: three industrial crops for energy and hemicelluloses production.
    Palma A; Loaiza JM; Díaz MJ; García JC; Giráldez I; López F
    Biotechnol Biofuels; 2021 Apr; 14(1):89. PubMed ID: 33827634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploitation of hemicellulose, cellulose and lignin from Hesperaloe funifera.
    Sánchez R; Rodríguez A; García JC; Rosal A; Jiménez L
    Bioresour Technol; 2011 Jan; 102(2):1308-15. PubMed ID: 20846856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New perspectives for Paulownia fortunei L. valorisation of the autohydrolysis and pulping processes.
    Caparrós S; Díaz MJ; Ariza J; López F; Jiménez L
    Bioresour Technol; 2008 Mar; 99(4):741-9. PubMed ID: 17368890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionation of wheat straw by atmospheric acetic acid process.
    Pan X; Sano Y
    Bioresour Technol; 2005 Jul; 96(11):1256-63. PubMed ID: 15734313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorisation of a leguminous species, Sesbania grandiflora, by means of hydrothermal fractionation.
    Yáñez R; Garrote G; Díaz MJ
    Bioresour Technol; 2009 Dec; 100(24):6514-23. PubMed ID: 19660941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.
    Martin-Sampedro R; Eugenio ME; Moreno JA; Revilla E; Villar JC
    Bioresour Technol; 2014 Feb; 153():236-44. PubMed ID: 24368272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of tagasaste pulping using soda-anthraquinone.
    Labidi J; Tejado A; García A; Jiménez L
    Bioresour Technol; 2008 Oct; 99(15):7270-7. PubMed ID: 18242980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification.
    El Hage R; Chrusciel L; Desharnais L; Brosse N
    Bioresour Technol; 2010 Dec; 101(23):9321-9. PubMed ID: 20655207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology.
    Zhao Y; Lu WJ; Wang HT; Yang JL
    Bioresour Technol; 2009 Dec; 100(23):5884-9. PubMed ID: 19616938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.