These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 20493704)

  • 21. Early neural responses underlie advantages for consonance over dissonance.
    Crespo-Bojorque P; Monte-Ordoño J; Toro JM
    Neuropsychologia; 2018 Aug; 117():188-198. PubMed ID: 29885961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
    González-García N; González MA; Rendón PL
    Brain Res; 2016 Jul; 1643():59-69. PubMed ID: 27134038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
    Bidelman GM; Heinz MG
    J Acoust Soc Am; 2011 Sep; 130(3):1488-502. PubMed ID: 21895089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perception of musical consonance and dissonance: an outcome of neural synchronization.
    Shapira Lots I; Stone L
    J R Soc Interface; 2008 Dec; 5(29):1429-34. PubMed ID: 18547910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials.
    Regnault P; Bigand E; Besson M
    J Cogn Neurosci; 2001 Feb; 13(2):241-55. PubMed ID: 11244549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.
    Bidelman GM; Grall J
    Neuroimage; 2014 Nov; 101():204-14. PubMed ID: 25019679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vocal similarity predicts the relative attraction of musical chords.
    Bowling DL; Purves D; Gill KZ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(1):216-221. PubMed ID: 29255031
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional abnormalities in the cortical processing of sound complexity and musical consonance in schizophrenia: evidence from an evoked potential study.
    Wu KY; Chao CW; Hung CI; Chen WH; Chen YT; Liang SF
    BMC Psychiatry; 2013 May; 13():158. PubMed ID: 23721126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain processing of consonance/dissonance in musicians and controls: a hemispheric asymmetry revisited.
    Proverbio AM; Orlandi A; Pisanu F
    Eur J Neurosci; 2016 Sep; 44(6):2340-56. PubMed ID: 27421883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of an auditory sensory reinforcement paradigm: Campbell's monkeys (Cercopithecus campbelli) do not prefer consonant over dissonant sounds.
    Koda H; Basile M; Olivier M; Remeuf K; Nagumo S; Blois-Heulin C; Lemasson A
    J Comp Psychol; 2013 Aug; 127(3):265-71. PubMed ID: 23566027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous consonance in music perception and composition.
    Harrison PMC; Pearce MT
    Psychol Rev; 2020 Mar; 127(2):216-244. PubMed ID: 31868392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The "consonance effect" and the hemispheres: a study on a split-brain patient.
    Prete G; Fabri M; Foschi N; Brancucci A; Tommasi L
    Laterality; 2015 May; 20(3):257-69. PubMed ID: 25256169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.
    Trost W; Frühholz S; Schön D; Labbé C; Pichon S; Grandjean D; Vuilleumier P
    Neuroimage; 2014 Dec; 103():55-64. PubMed ID: 25224999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Revisiting the innate preference for consonance.
    Plantinga J; Trehub SE
    J Exp Psychol Hum Percept Perform; 2014 Feb; 40(1):40-9. PubMed ID: 23815480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
    Bidelman GM; Krishnan A
    J Neurosci; 2009 Oct; 29(42):13165-71. PubMed ID: 19846704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preference for consonant music over dissonant music by an infant chimpanzee.
    Sugimoto T; Kobayashi H; Nobuyoshi N; Kiriyama Y; Takeshita H; Nakamura T; Hashiya K
    Primates; 2010 Jan; 51(1):7-12. PubMed ID: 19626392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. (Dis-)Harmony in movement: effects of musical dissonance on movement timing and form.
    Komeilipoor N; Rodger MW; Craig CM; Cesari P
    Exp Brain Res; 2015 May; 233(5):1585-95. PubMed ID: 25725774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulse-coupled neuron models as investigative tools for musical consonance.
    Heffernan B; Longtin A
    J Neurosci Methods; 2009 Sep; 183(1):95-106. PubMed ID: 19591870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universality vs experience: a cross-cultural pilot study on the consonance effect in music at different altitudes.
    Prete G; Bondi D; Verratti V; Aloisi AM; Rai P; Tommasi L
    PeerJ; 2020; 8():e9344. PubMed ID: 32704441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Register impacts perceptual consonance through roughness and sharpness.
    Eerola T; Lahdelma I
    Psychon Bull Rev; 2022 Jun; 29(3):800-808. PubMed ID: 34921342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.