These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2049385)

  • 41. Molecular recognition of cobalt(III)-ligated peptides by serine proteases: the role of electrostatic effects.
    Bagger S; Wagner K
    J Pept Res; 1998 Oct; 52(4):273-82. PubMed ID: 9832305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. THE ALPHA-CHYMOTRYPSIN-CATALYZED HYDROLYSIS OF A SERIES OF ACYLATED GLYCINE METHYL ESTERS. II. BEHAVIOR AT LOW AND HIGH SUBSTRATE CONCENTRATIONS.
    WOLF JP; WALLACE RA; PETERSON RL; NIEMANN C
    Biochemistry; 1964 Jul; 3():940-4. PubMed ID: 14214084
    [No Abstract]   [Full Text] [Related]  

  • 43. Probes of energy transduction in enzyme catalysis.
    Huang Y; Bolen DW
    Methods Enzymol; 1995; 259():19-43. PubMed ID: 8538454
    [No Abstract]   [Full Text] [Related]  

  • 44. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin. Enzyme-substrate interactions beyond subsite S'1.
    Bauer CA
    Biochim Biophys Acta; 1976 Jul; 438(2):495-502. PubMed ID: 821530
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Covalent bond changes as a driving force in enzyme catalysis.
    Huang Y; Bolen DW
    Biochemistry; 1993 Sep; 32(36):9329-39. PubMed ID: 8369303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amino acid sequence at the reactive site of rabbit alpha-1-antiproteinases.
    Saito A; Sinohara H
    J Biochem; 1990 Jul; 108(1):80-5. PubMed ID: 2229014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An inverse substrate orientation for the regioselective acylation of 3',5'-diaminonucleosides catalyzed by Candida antarctica lipase B?
    Lavandera I; Fernández S; Magdalena J; Ferrero M; Kazlauskas RJ; Gotor V
    Chembiochem; 2005 Aug; 6(8):1381-90. PubMed ID: 15977272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates.
    Case A; Stein RL
    Biochemistry; 2003 Aug; 42(31):9466-81. PubMed ID: 12899634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleophile selectivity in the acyl transfer reaction of a designed enzyme.
    Hederos S; Baltzer L
    Biopolymers; 2005 Dec; 79(6):292-9. PubMed ID: 16108014
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of specificity on ligand conformation in acyl-chymotrypsins.
    Johal SS; White AJ; Wharton CW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of ionic strength of the steady-state kinetics of -chymotrypsin-catalyzed reactions.
    Martinek K; Yatsimirskii AK; Berezin IV
    Mol Biol; 1971; 5(1):77-88. PubMed ID: 5154806
    [No Abstract]   [Full Text] [Related]  

  • 52. Kinetic study on the acylation step of alpha-chymotrypsin-catalyzed hydrolysis of acylimidazole. A model reaction of specific peptide substrate activated by binding to the enzyme.
    Ikeda K; Kunugi S
    J Biochem; 1980 Oct; 88(4):977-86. PubMed ID: 7451425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of alpha-chymotrypsin catalysis by ferric porphyrins and cyclodextrins.
    Kano K; Ishida Y
    Chem Asian J; 2008 Apr; 3(4):678-86. PubMed ID: 18311746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences.
    White AJ; Wharton CW
    Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of modulated structural dynamics on the kinetics of alpha-chymotrypsin catalysis. Insights through chemical glycosylation, molecular dynamics and domain motion analysis.
    Solá RJ; Griebenow K
    FEBS J; 2006 Dec; 273(23):5303-19. PubMed ID: 17076704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imprinting of lyophilized alpha-chymotrypsin affects the reactivity of the active-site imidazole.
    Stewart NA; Taralp A; Kaplan H
    Biochem Biophys Res Commun; 1997 Nov; 240(1):27-31. PubMed ID: 9367875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Specificity and stereospecificity of alpha-chymotrypsin.
    Ingles DW; Knowles JR
    Biochem J; 1967 Aug; 104(2):369-77. PubMed ID: 6048779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Specificity of S'1 and S'2 subsites of human tissue kallikrein using the reactive-centre loop of kallistatin: the importance of P'1 and P'2 positions in design of inhibitors.
    Pimenta DC; Fogaça SE; Melo RL; Juliano L; Juliano MA
    Biochem J; 2003 May; 371(Pt 3):1021-5. PubMed ID: 12578561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1,2,5-Thiadiazolidin-3-one 1,1 dioxide: a powerful scaffold for probing the S' subsites of (chymo)trypsin-like serine proteases.
    Groutas WC; Epp JB; Kuang R; Ruan S; Chong LS; Venkataraman R; Tu J; He S; Yu H; Fu Q; Li YH; Truong TM; Vu NT
    Arch Biochem Biophys; 2001 Jan; 385(1):162-9. PubMed ID: 11361013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.