BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20493974)

  • 1. Apatite-formation ability--predictor of "bioactivity"?
    Pan H; Zhao X; Darvell BW; Lu WW
    Acta Biomater; 2010 Nov; 6(11):4181-8. PubMed ID: 20493974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro bioactivity of akermanite ceramics.
    Wu C; Chang J; Ni S; Wang J
    J Biomed Mater Res A; 2006 Jan; 76(1):73-80. PubMed ID: 16224776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone formation on apatite-coated titanium incorporated with bone morphogenetic protein and heparin.
    Kodama T; Goto T; Miyazaki T; Takahashi T
    Int J Oral Maxillofac Implants; 2008; 23(6):1013-9. PubMed ID: 19216269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites.
    Takemoto S; Kusudo Y; Tsuru K; Hayakawa S; Osaka A; Takashima S
    J Biomed Mater Res A; 2004 Jun; 69(3):544-51. PubMed ID: 15127401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of 3D osteoblast migration and bone apatite during in vitro early osteocytogenesis.
    Robin M; Almeida C; Azaïs T; Haye B; Illoul C; Lesieur J; Giraud-Guille MM; Nassif N; Hélary C
    Bone; 2016 Jul; 88():146-156. PubMed ID: 27150828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.
    Ning C; Zhou Y
    Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of in vitro and in vivo bioactivity of SrO-CaO-ZnO-SiO2 glass grafts.
    Towler MR; Boyd D; Freeman C; Brook IM; Farthing P
    J Biomater Appl; 2009 May; 23(6):561-72. PubMed ID: 18757496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.
    Yang Z; Si S; Zeng X; Zhang C; Dai H
    Acta Biomater; 2008 May; 4(3):560-8. PubMed ID: 18053780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of biomimetic apatite structure on osteoblast viability, proliferation, and gene expression.
    Chou YF; Huang W; Dunn JC; Miller TA; Wu BM
    Biomaterials; 2005 Jan; 26(3):285-95. PubMed ID: 15262470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth.
    Bourgeois B; Laboux O; Obadia L; Gauthier O; Betti E; Aguado E; Daculsi G; Bouler JM
    J Biomed Mater Res A; 2003 Jun; 65(3):402-8. PubMed ID: 12746888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and growth of clusters in conventional and new kinds of simulated body fluids.
    Oyane A; Onuma K; Ito A; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Feb; 64(2):339-48. PubMed ID: 12522821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour.
    San Thian E; Ahmad Z; Huang J; Edirisinghe MJ; Jayasinghe SN; Ireland DC; Brooks RA; Rushton N; Bonfield W; Best SM
    Biomaterials; 2008 Apr; 29(12):1833-43. PubMed ID: 18255136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth factors to stimulate bone formation.
    Baylink DJ; Finkelman RD; Mohan S
    J Bone Miner Res; 1993 Dec; 8 Suppl 2():S565-72. PubMed ID: 8122528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts.
    Zreiqat H; Valenzuela SM; Nissan BB; Roest R; Knabe C; Radlanski RJ; Renz H; Evans PJ
    Biomaterials; 2005 Dec; 26(36):7579-86. PubMed ID: 16002135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid.
    Takeuchi A; Ohtsuki C; Miyazaki T; Tanaka H; Yamazaki M; Tanihara M
    J Biomed Mater Res A; 2003 May; 65(2):283-9. PubMed ID: 12734823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid.
    Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C
    Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.