These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 20494101)

  • 1. Amino acid sequence determinants and molecular chaperones in amyloid fibril formation.
    Nerelius C; Fitzen M; Johansson J
    Biochem Biophys Res Commun; 2010 May; 396(1):2-6. PubMed ID: 20494101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing amyloid formation by catching unfolded transmembrane segments.
    Johansson H; Nerelius C; Nordling K; Johansson J
    J Mol Biol; 2009 Jun; 389(2):227-9. PubMed ID: 19376131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The BRICHOS domain, amyloid fibril formation, and their relationship.
    Knight SD; Presto J; Linse S; Johansson J
    Biochemistry; 2013 Oct; 52(43):7523-31. PubMed ID: 24099305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-amyloid activity of the C-terminal domain of proSP-C against amyloid beta-peptide and medin.
    Nerelius C; Gustafsson M; Nordling K; Larsson A; Johansson J
    Biochemistry; 2009 May; 48(17):3778-86. PubMed ID: 19281242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations linked to interstitial lung disease can abrogate anti-amyloid function of prosurfactant protein C.
    Nerelius C; Martin E; Peng S; Gustafsson M; Nordling K; Weaver T; Johansson J
    Biochem J; 2008 Dec; 416(2):201-9. PubMed ID: 18643778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRICHOS domain associated with lung fibrosis, dementia and cancer--a chaperone that prevents amyloid fibril formation?
    Willander H; Hermansson E; Johansson J; Presto J
    FEBS J; 2011 Oct; 278(20):3893-904. PubMed ID: 21668643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-binding specificity of the prosurfactant protein C Brichos domain analyzed by electrospray ionization mass spectrometry.
    Fitzen M; Alvelius G; Nordling K; Jörnvall H; Bergman T; Johansson J
    Rapid Commun Mass Spectrom; 2009 Nov; 23(22):3591-8. PubMed ID: 19844966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal, endoplasmic reticulum-lumenal domain of prosurfactant protein C - structural features and membrane interactions.
    Casals C; Johansson H; Saenz A; Gustafsson M; Alfonso C; Nordling K; Johansson J
    FEBS J; 2008 Feb; 275(3):536-47. PubMed ID: 18199284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation.
    Johansson J; Nerelius C; Willander H; Presto J
    Biochem Biophys Res Commun; 2010 Nov; 402(3):515-8. PubMed ID: 20971069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence determinants of amyloid fibril formation.
    López de la Paz M; Serrano L
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):87-92. PubMed ID: 14691246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid.
    Lai Z; Colón W; Kelly JW
    Biochemistry; 1996 May; 35(20):6470-82. PubMed ID: 8639594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-misfolding diseases and chaperone-based therapeutic approaches.
    Chaudhuri TK; Paul S
    FEBS J; 2006 Apr; 273(7):1331-49. PubMed ID: 16689923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of amyloid fibril formation of human amylin by N-alkylated amino acid and alpha-hydroxy acid residue containing peptides.
    Rijkers DT; Höppener JW; Posthuma G; Lips CJ; Liskamp RM
    Chemistry; 2002 Sep; 8(18):4285-91. PubMed ID: 12298020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibril formation of hsp10 homologue proteins and determination of fibril core regions: differences in fibril core regions dependent on subtle differences in amino acid sequence.
    Yagi H; Sato A; Yoshida A; Hattori Y; Hara M; Shimamura J; Sakane I; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2008 Apr; 377(5):1593-606. PubMed ID: 18329043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity.
    Kapurniotu A; Schmauder A; Tenidis K
    J Mol Biol; 2002 Jan; 315(3):339-50. PubMed ID: 11786016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid peptides and proteins in review.
    Harrison RS; Sharpe PC; Singh Y; Fairlie DP
    Rev Physiol Biochem Pharmacol; 2007; 159():1-77. PubMed ID: 17846922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties.
    Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A
    J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the mysteries of protein folding and misfolding.
    Ecroyd H; Carver JA
    IUBMB Life; 2008 Dec; 60(12):769-74. PubMed ID: 18767168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.