These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20494131)

  • 21. Substrate specificity of human ribonucleotide reductase from Molt-4F cells.
    Chang CH; Cheng YC
    Cancer Res; 1979 Dec; 39(12):5081-6. PubMed ID: 498135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structure of dUTPase from equine infectious anaemia virus; active site metal binding in a substrate analogue complex.
    Dauter Z; Persson R; Rosengren AM; Nyman PO; Wilson KS; Cedergren-Zeppezauer ES
    J Mol Biol; 1999 Jan; 285(2):655-73. PubMed ID: 9878436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition.
    Datta S; Ganesh N; Chandra NR; Muniyappa K; Vijayan M
    Proteins; 2003 Feb; 50(3):474-85. PubMed ID: 12557189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular and structural basis of drift in the functions of closely-related homologous enzyme domains: implications for function annotation based on homology searches and structural genomics.
    Roy A; Srinivasan N; Gowri VS
    In Silico Biol; 2009; 9(1-2):S41-55. PubMed ID: 19537164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The crystal structure of a complex of Campylobacter jejuni dUTPase with substrate analogue sheds light on the mechanism and suggests the "basic module" for dimeric d(C/U)TPases.
    Moroz OV; Harkiolaki M; Galperin MY; Vagin AA; González-Pacanowska D; Wilson KS
    J Mol Biol; 2004 Oct; 342(5):1583-97. PubMed ID: 15364583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of pyridine nucleotide substrates with Escherichia coli dihydrodipicolinate reductase: thermodynamic and structural analysis of binary complexes.
    Reddy SG; Scapin G; Blanchard JS
    Biochemistry; 1996 Oct; 35(41):13294-302. PubMed ID: 8873595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis.
    Anishetty S; Pulimi M; Pennathur G
    Comput Biol Chem; 2005 Oct; 29(5):368-78. PubMed ID: 16213791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possibilities of the method of step-by-step complication of ligand structure in studies of protein--nucleic acid interactions: mechanisms of functioning of some replication, repair, topoisomerization, and restriction enzymes.
    Bugreev DV; Nevinsky GA
    Biochemistry (Mosc); 1999 Mar; 64(3):237-49. PubMed ID: 10205294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism.
    Egeblad L; Welin M; Flodin S; Gräslund S; Wang L; Balzarini J; Eriksson S; Nordlund P
    PLoS One; 2012; 7(5):e37724. PubMed ID: 22662200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Closing the circle on ribonucleotide reductases.
    Logan DT
    Nat Struct Mol Biol; 2011 Mar; 18(3):251-3. PubMed ID: 21372851
    [No Abstract]   [Full Text] [Related]  

  • 32. Treatment of multifunctional enzymes in metabolic pathway analysis.
    Schuster S; Zevedei-Oancea I
    Biophys Chem; 2002 Sep; 99(1):63-75. PubMed ID: 12223240
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy.
    Shuvalov O; Petukhov A; Daks A; Fedorova O; Vasileva E; Barlev NA
    Oncotarget; 2017 Apr; 8(14):23955-23977. PubMed ID: 28177894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biotechnological and Biomedical Applications of Enzymes Involved in the Synthesis of Nucleosides and Nucleotides.
    Fernández-Lucas J
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation.
    Sweetlove LJ; Fernie AR
    Nat Commun; 2018 May; 9(1):2136. PubMed ID: 29849027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of mammalian nucleotide metabolism and biosynthesis.
    Lane AN; Fan TW
    Nucleic Acids Res; 2015 Feb; 43(4):2466-85. PubMed ID: 25628363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-throughput structural biology of metabolic enzymes and its impact on human diseases.
    Yue WW; Oppermann U
    J Inherit Metab Dis; 2011 Jun; 34(3):575-81. PubMed ID: 21340633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic functions of myo-inositol. IV. Temporal changes of the level of various enzyme activities during development of inositol deficiency.
    Lembach K; Charalampous FC
    J Biol Chem; 1966 Jan; 241(2):395-9. PubMed ID: 5903731
    [No Abstract]   [Full Text] [Related]  

  • 39. How the chemical features of molecules may have addressed the settlement of metabolic steps.
    Del-Corso A; Cappiello M; Moschini R; Balestri F; Mura U
    Metabolomics; 2017 Nov; 14(1):2. PubMed ID: 30830345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymes of nucleotide metabolism: the significance of subunit size and polymer size for biological function and regulatory properties.
    Traut TW
    CRC Crit Rev Biochem; 1988; 23(2):121-69. PubMed ID: 3048887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.