These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 20494186)
1. Using eigenvalues as variance priors in the prediction of genomic breeding values by principal component analysis. Macciotta NP; Gaspa G; Steri R; Nicolazzi EL; Dimauro C; Pieramati C; Cappio-Borlino A J Dairy Sci; 2010 Jun; 93(6):2765-74. PubMed ID: 20494186 [TBL] [Abstract][Full Text] [Related]
2. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. Kizilkaya K; Fernando RL; Garrick DJ J Anim Sci; 2010 Feb; 88(2):544-51. PubMed ID: 19820059 [TBL] [Abstract][Full Text] [Related]
3. Prediction of genomic breeding values for dairy traits in Italian Brown and Simmental bulls using a principal component approach. Pintus MA; Gaspa G; Nicolazzi EL; Vicario D; Rossoni A; Ajmone-Marsan P; Nardone A; Dimauro C; Macciotta NP J Dairy Sci; 2012 Jun; 95(6):3390-400. PubMed ID: 22612973 [TBL] [Abstract][Full Text] [Related]
4. Use of principal component approach to predict direct genomic breeding values for beef traits in Italian Simmental cattle. Gaspa G; Pintus MA; Nicolazzi EL; Vicario D; Valentini A; Dimauro C; Macciotta NP J Anim Sci; 2013 Jan; 91(1):29-37. PubMed ID: 23100576 [TBL] [Abstract][Full Text] [Related]
5. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. de Roos AP; Schrooten C; Mullaart E; Calus MP; Veerkamp RF J Dairy Sci; 2007 Oct; 90(10):4821-9. PubMed ID: 17881705 [TBL] [Abstract][Full Text] [Related]
6. Predictive ability of direct genomic values for lifetime net merit of Holstein sires using selected subsets of single nucleotide polymorphism markers. Weigel KA; de los Campos G; González-Recio O; Naya H; Wu XL; Long N; Rosa GJ; Gianola D J Dairy Sci; 2009 Oct; 92(10):5248-57. PubMed ID: 19762843 [TBL] [Abstract][Full Text] [Related]
7. Technical note: prediction of breeding values using marker-derived relationship matrices. Hayes BJ; Goddard ME J Anim Sci; 2008 Sep; 86(9):2089-92. PubMed ID: 18407982 [TBL] [Abstract][Full Text] [Related]
8. Predicting energy balance for dairy cows using high-density single nucleotide polymorphism information. Verbyla KL; Calus MP; Mulder HA; de Haas Y; Veerkamp RF J Dairy Sci; 2010 Jun; 93(6):2757-64. PubMed ID: 20494185 [TBL] [Abstract][Full Text] [Related]
9. Invited review: Genomic selection in dairy cattle: progress and challenges. Hayes BJ; Bowman PJ; Chamberlain AJ; Goddard ME J Dairy Sci; 2009 Feb; 92(2):433-43. PubMed ID: 19164653 [TBL] [Abstract][Full Text] [Related]
10. The importance of haplotype length and heritability using genomic selection in dairy cattle. Villumsen TM; Janss L; Lund MS J Anim Breed Genet; 2009 Feb; 126(1):3-13. PubMed ID: 19207924 [TBL] [Abstract][Full Text] [Related]
11. Genomic breeding value estimation using genetic markers, inferred ancestral haplotypes, and the genomic relationship matrix. de Roos AP; Schrooten C; Druet T J Dairy Sci; 2011 Sep; 94(9):4708-14. PubMed ID: 21854945 [TBL] [Abstract][Full Text] [Related]
12. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. Mulder HA; Calus MP; Druet T; Schrooten C J Dairy Sci; 2012 Feb; 95(2):876-89. PubMed ID: 22281352 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625,000 single nucleotide polymorphism markers. Pryce JE; Arias J; Bowman PJ; Davis SR; Macdonald KA; Waghorn GC; Wales WJ; Williams YJ; Spelman RJ; Hayes BJ J Dairy Sci; 2012 Apr; 95(4):2108-19. PubMed ID: 22459856 [TBL] [Abstract][Full Text] [Related]
14. Application of selection index calculations to determine selection strategies in genomic breeding programs. König S; Swalve HH J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847 [TBL] [Abstract][Full Text] [Related]
15. Application of Bayesian least absolute shrinkage and selection operator (LASSO) and BayesCπ methods for genomic selection in French Holstein and Montbéliarde breeds. Colombani C; Legarra A; Fritz S; Guillaume F; Croiseau P; Ducrocq V; Robert-Granié C J Dairy Sci; 2013 Jan; 96(1):575-91. PubMed ID: 23127905 [TBL] [Abstract][Full Text] [Related]
16. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations. Dassonneville R; Brøndum RF; Druet T; Fritz S; Guillaume F; Guldbrandtsen B; Lund MS; Ducrocq V; Su G J Dairy Sci; 2011 Jul; 94(7):3679-86. PubMed ID: 21700057 [TBL] [Abstract][Full Text] [Related]
17. The impact of the rank of marker variance-covariance matrix in principal component evaluation for genomic selection applications. Dimauro C; Cellesi M; Pintus MA; Macciotta NP J Anim Breed Genet; 2011 Dec; 128(6):440-5. PubMed ID: 22059577 [TBL] [Abstract][Full Text] [Related]
19. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Pant SD; Schenkel FS; Verschoor CP; You Q; Kelton DF; Moore SS; Karrow NA Genomics; 2010 Mar; 95(3):176-82. PubMed ID: 20060464 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM. Calus MP; Veerkamp RF J Anim Breed Genet; 2007 Dec; 124(6):362-8. PubMed ID: 18076473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]