These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20494376)

  • 1. Adenosine triphosphate depletion by cyanide results in a Na(+)-dependent Mg(2+) extrusion from liver cells.
    Dalal P; Romani A
    Metabolism; 2010 Nov; 59(11):1663-71. PubMed ID: 20494376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of Na(+)- and Ca(2+)-dependent Mg(2+) extrusion by alpha(1)- and beta-adrenergic agonists in rat liver cells.
    Fagan TE; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2000 Nov; 279(5):G943-50. PubMed ID: 11052991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP depletion rather than mitochondrial depolarization mediates hepatocyte killing after metabolic inhibition.
    Nieminen AL; Saylor AK; Herman B; Lemasters JJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C67-74. PubMed ID: 8048493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha(1)-Adrenoceptor-induced Mg2+ extrusion from rat hepatocytes occurs via Na(+)-dependent transport mechanism.
    Fagan TE; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2001 Jun; 280(6):G1145-56. PubMed ID: 11352807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP synthase activity is required for fructose to protect cultured hepatocytes from the toxicity of cyanide.
    Snyder JW; Pastorino JG; Thomas AP; Hoek JB; Farber JL
    Am J Physiol; 1993 Mar; 264(3 Pt 1):C709-14. PubMed ID: 8460673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glucose in modulating Mg2+ homeostasis in liver cells from starved rats.
    Torres LM; Youngner J; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2005 Feb; 288(2):G195-206. PubMed ID: 15647605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic inhibition strongly inhibits Na+-dependent Mg2+ efflux in rat ventricular myocytes.
    Tashiro M; Inoue H; Konishi M
    Biophys J; 2009 Jun; 96(12):4941-50. PubMed ID: 19527653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of two distinct Mg(2+) extrusion mechanisms in cardiac sarcolemmal vesicles.
    Cefaratti C; Romani AM
    Mol Cell Biochem; 2007 Sep; 303(1-2):63-72. PubMed ID: 17415622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute effect of EtOH on Mg2+ homeostasis in liver cells: evidence for the activation of an Na+/Mg2+ exchanger.
    Tessman PA; Romani A
    Am J Physiol; 1998 Nov; 275(5):G1106-16. PubMed ID: 9815041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion.
    Carini R; Bellomo G; Benedetti A; Fulceri R; Gamberucci A; Parola M; Dianzani MU; Albano E
    Hepatology; 1995 Apr; 21(4):1089-98. PubMed ID: 7705784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of cellular acidification in cyanide-treated hepatocytes results from inhibition of Na+/H+ exchange.
    Schoenecker JA; Weinman SA
    Am J Physiol; 1994 May; 266(5 Pt 1):G892-8. PubMed ID: 8203534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of cyanide on intracellular ionic exchange in ferret and rat ventricular myocardium.
    Fry CH; Harding DP; Mounsey JP
    Proc R Soc Lond B Biol Sci; 1987 Feb; 230(1258):53-75. PubMed ID: 2884664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of Na+ influx in ATP-depleted hepatocytes.
    Kawanishi T; Uneyama C; Toyoda K; Ohno Y; Takanaka A; Takahashi M
    Life Sci; 1995; 57(4):355-61. PubMed ID: 7603308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of metabolic inhibitors and second messengers upon Na(+)-H+ exchange in the sheep cardiac Purkinje fibre.
    Wu ML; Vaughan-Jones RD
    J Physiol; 1994 Jul; 478 ( Pt 2)(Pt 2):301-13. PubMed ID: 7525944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acute and prolonged alcohol administration on Mg(2+) homeostasis in cardiac cells.
    Romani AM
    Alcohol; 2015 May; 49(3):265-73. PubMed ID: 25800156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular acidosis protects cultured hepatocytes from the toxic consequences of a loss of mitochondrial energization.
    Masaki N; Thomas AP; Hoek JB; Farber JL
    Arch Biochem Biophys; 1989 Jul; 272(1):152-61. PubMed ID: 2735760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptozotocin-induced diabetes impairs Mg2+ homeostasis and uptake in rat liver cells.
    Fagan TE; Cefaratti C; Romani A
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E184-93. PubMed ID: 14701664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a sodium-dependent calcium influx in isolated rat hepatocytes undergoing ATP depletion.
    Carini R; Bellomo G; Dianzani MU; Albano E
    Biochem Biophys Res Commun; 1994 Jul; 202(1):360-6. PubMed ID: 8037733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in cation homeostasis in cultured chick ventricular cells during and after recovery from adenosine triphosphate depletion.
    Ishida H; Kohmoto O; Bridge JH; Barry WH
    J Clin Invest; 1988 Apr; 81(4):1173-81. PubMed ID: 3350967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chemical hypoxia on intracellular ATP and cytosolic Mg2+ levels.
    Li HY; Dai LJ; Quamme GA
    J Lab Clin Med; 1993 Sep; 122(3):260-72. PubMed ID: 8409702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.