These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20494628)

  • 1. Monitoring the development of a microbial electrolysis cell bioanode using an electrochemical quartz crystal microbalance.
    Kleijn JM; Lhuillier Q; Jeremiasse AW
    Bioelectrochemistry; 2010 Oct; 79(2):272-5. PubMed ID: 20494628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term monitoring of biofilm growth and disinfection using a quartz crystal microbalance and reflectance measurements.
    Reipa V; Almeida J; Cole KD
    J Microbiol Methods; 2006 Sep; 66(3):449-59. PubMed ID: 16580080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical quartz crystal microbalance study of azurin adsorption onto an alkanethiol self-assembled monolayer on gold.
    Fleming BD; Praporski S; Bond AM; Martin LL
    Langmuir; 2008 Jan; 24(1):323-7. PubMed ID: 18041855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of coated electrode of immobilized denitrifying bacteria and bio-electrochemical denitrifying reactor].
    Tan Y; Wang M; Luo Q
    Wei Sheng Yan Jiu; 2004 Jul; 33(4):407-9. PubMed ID: 15461259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring.
    Schofield AL; Rudd TR; Martin DS; Fernig DG; Edwards C
    Biosens Bioelectron; 2007 Oct; 23(3):407-13. PubMed ID: 17580113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity.
    Michie IS; Kim JR; Dinsdale RM; Guwy AJ; Premier GC
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):419-30. PubMed ID: 21853240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic measurement of the surface stress induced by the attachment and growth of cells on Au electrode with a quartz crystal microbalance.
    Tan L; Xie Q; Jia X; Guo M; Zhang Y; Tang H; Yao S
    Biosens Bioelectron; 2009 Feb; 24(6):1603-9. PubMed ID: 18824347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous monitoring of protein adsorption kinetics using a quartz crystal microbalance and field-effect transistor integrated device.
    Goda T; Maeda Y; Miyahara Y
    Anal Chem; 2012 Sep; 84(17):7308-14. PubMed ID: 22861174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of adsorption behavior of bilirubin on human-albumin monolayer using a quartz crystal microbalance.
    Si S; Si L; Ren F; Zhu D; Fung Y
    J Colloid Interface Sci; 2002 Sep; 253(1):47-52. PubMed ID: 16290829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An insight into the adsorption and electrochemical processes occurring during the analysis of copper and lead in wines, using an electrochemical quartz crystal nanobalance.
    Yamasaki A; Oliveira JA; Duarte AC; Gomes MT
    Talanta; 2012 Aug; 98():14-8. PubMed ID: 22939122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous detection of surface coverage and structure of krypton films on gold by helium atom diffraction and quartz crystal microbalance techniques.
    Danışman MF; Özkan B
    Rev Sci Instrum; 2011 Nov; 82(11):115104. PubMed ID: 22129010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical method for long-term and large-scale monitoring of spatial biofilm development.
    Milferstedt K; Pons MN; Morgenroth E
    Biotechnol Bioeng; 2006 Jul; 94(4):773-82. PubMed ID: 16477662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and monitoring of biofilm formation in water treatment systems by quartz crystal microbalance sensors.
    Sprung C; Wählisch D; Hüttl R; Seidel J; Meyer A; Wolf G
    Water Sci Technol; 2009; 59(3):543-8. PubMed ID: 19214009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting cells on the surface of a silver electrode quartz crystal microbalance using plasma treatment and graft polymerization.
    Chou HC; Yan TR; Chen KS
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):244-9. PubMed ID: 19545984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
    Parameswaran P; Torres CI; Lee HS; Rittmann BE; Krajmalnik-Brown R
    Bioresour Technol; 2011 Jan; 102(1):263-71. PubMed ID: 20430615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ growth of nanogold on quartz crystal microbalance and its application in the interaction between heparin and antithrombin III.
    Zhang Q; Huang Y; Zhao R; Liu G; Chen Y
    J Colloid Interface Sci; 2008 Mar; 319(1):94-9. PubMed ID: 18082175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds.
    Zeng X; Borole AP; Pavlostathis SG
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35981-35989. PubMed ID: 29558790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conduction-based modeling of the biofilm anode of a microbial fuel cell.
    Kato Marcus A; Torres CI; Rittmann BE
    Biotechnol Bioeng; 2007 Dec; 98(6):1171-82. PubMed ID: 17570714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical quartz crystal microbalance study of the etching of gold surfaces in the presence of tetramethylthiourea.
    Larsen AG; Johannsen K; Gothelf KV
    J Colloid Interface Sci; 2004 Nov; 279(1):158-66. PubMed ID: 15380425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC).
    Liu W; Wang A; Sun D; Ren N; Zhang Y; Zhou J
    J Biotechnol; 2012 Feb; 157(4):628-32. PubMed ID: 21939699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.