BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20494738)

  • 1. Mechanisms of inflammatory lung injury in the neonate: lessons from a transgenic mouse model of bronchopulmonary dysplasia.
    Bry K; Hogmalm A; Bäckström E
    Semin Perinatol; 2010 Jun; 34(3):211-21. PubMed ID: 20494738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pathogenesis of bronchopulmonary dysplasia: the role of interleukin 1beta in the regulation of inflammation-mediated pulmonary retinoic acid pathways in transgenic mice.
    Bry K; Lappalainen U
    Semin Perinatol; 2006 Jun; 30(3):121-8. PubMed ID: 16813970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia.
    Hogmalm A; Sheppard D; Lappalainen U; Bry K
    Am J Respir Cell Mol Biol; 2010 Jul; 43(1):88-98. PubMed ID: 19717813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix metalloproteinase-9 deficiency worsens lung injury in a model of bronchopulmonary dysplasia.
    Lukkarinen H; Hogmalm A; Lappalainen U; Bry K
    Am J Respir Cell Mol Biol; 2009 Jul; 41(1):59-68. PubMed ID: 19097983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental stage is a major determinant of lung injury in a murine model of bronchopulmonary dysplasia.
    Bäckström E; Hogmalm A; Lappalainen U; Bry K
    Pediatr Res; 2011 Apr; 69(4):312-8. PubMed ID: 21178818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops.
    Watterberg KL; Demers LM; Scott SM; Murphy S
    Pediatrics; 1996 Feb; 97(2):210-5. PubMed ID: 8584379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antenatal inflammation and lung injury: prenatal origin of neonatal disease.
    Kramer BW
    J Perinatol; 2008 May; 28 Suppl 1():S21-7. PubMed ID: 18446173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amniotic fluid transforming growth factor-beta1 and the risk for the development of neonatal bronchopulmonary dysplasia.
    Ichiba H; Saito M; Yamano T
    Neonatology; 2009; 96(3):156-61. PubMed ID: 19332995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maternal IL-1beta production prevents lung injury in a mouse model of bronchopulmonary dysplasia.
    Bäckström E; Lappalainen U; Bry K
    Am J Respir Cell Mol Biol; 2010 Feb; 42(2):149-60. PubMed ID: 19411613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased lung matrix metalloproteinase-9 levels in extremely premature baboons with bronchopulmonary dysplasia.
    Tambunting F; Beharry KD; Hartleroad J; Waltzman J; Stavitsky Y; Modanlou HD
    Pediatr Pulmonol; 2005 Jan; 39(1):5-14. PubMed ID: 15521085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammatory cytokines in gastric fluid at birth and the development of bronchopulmonary dysplasia.
    Stichel H; Bäckström E; Hafström O; Nilsson S; Lappalainen U; Bry K
    Acta Paediatr; 2011 Sep; 100(9):1206-12. PubMed ID: 21438921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-1beta disrupts postnatal lung morphogenesis in the mouse.
    Bry K; Whitsett JA; Lappalainen U
    Am J Respir Cell Mol Biol; 2007 Jan; 36(1):32-42. PubMed ID: 16888287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preterm labor is induced by intraamniotic infusions of interleukin-1beta and tumor necrosis factor-alpha but not by interleukin-6 or interleukin-8 in a nonhuman primate model.
    Sadowsky DW; Adams KM; Gravett MG; Witkin SS; Novy MJ
    Am J Obstet Gynecol; 2006 Dec; 195(6):1578-89. PubMed ID: 17132473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of CXC chemokine receptor-2 in a murine model of bronchopulmonary dysplasia.
    Hogmalm A; Bäckström E; Bry M; Lappalainen U; Lukkarinen HP; Bry K
    Am J Respir Cell Mol Biol; 2012 Dec; 47(6):746-58. PubMed ID: 22865624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional overexpression of bioactive transforming growth factor-beta1 in neonatal mouse lung: a new model for bronchopulmonary dysplasia?
    Vicencio AG; Lee CG; Cho SJ; Eickelberg O; Chuu Y; Haddad GG; Elias JA
    Am J Respir Cell Mol Biol; 2004 Dec; 31(6):650-6. PubMed ID: 15333328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of preterm birth with sustained postnatal inflammatory response.
    Skogstrand K; Hougaard DM; Schendel DE; Bent NP; Svaerke C; Thorsen P
    Obstet Gynecol; 2008 May; 111(5):1118-28. PubMed ID: 18448744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of transforming growth factor beta (TGF-b1) by human preterm lung inflammatory cells.
    Kwong KY; Niang S; Literat A; Zhu NL; Ramanathan R; Jones CA; Minoo P
    Life Sci; 2006 Nov; 79(25):2349-56. PubMed ID: 16952379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-1 balance in the lungs of preterm infants who develop bronchopulmonary dysplasia.
    Kakkera DK; Siddiq MM; Parton LA
    Biol Neonate; 2005; 87(2):82-90. PubMed ID: 15539764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants.
    Viscardi RM; Muhumuza CK; Rodriguez A; Fairchild KD; Sun CC; Gross GW; Campbell AB; Wilson PD; Hester L; Hasday JD
    Pediatr Res; 2004 Jun; 55(6):1009-17. PubMed ID: 15155869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain.
    Kumral A; Baskin H; Yesilirmak DC; Ergur BU; Aykan S; Genc S; Genc K; Yilmaz O; Tugyan K; Giray O; Duman N; Ozkan H
    Neonatology; 2007; 92(4):269-78. PubMed ID: 17627093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.