These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20494994)

  • 21. Genetic and biochemical properties of streptococcal NAD-glycohydrolase inhibitor.
    Kimoto H; Fujii Y; Hirano S; Yokota Y; Taketo A
    J Biol Chem; 2006 Apr; 281(14):9181-9. PubMed ID: 16380378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Group A
    Toh H; Lin CY; Nakajima S; Aikawa C; Nozawa T; Nakagawa I
    Front Cell Infect Microbiol; 2019; 9():398. PubMed ID: 31850237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of NADase in virulence in experimental invasive group A streptococcal infection.
    Bricker AL; Carey VJ; Wessels MR
    Infect Immun; 2005 Oct; 73(10):6562-6. PubMed ID: 16177331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase.
    Michos A; Gryllos I; Håkansson A; Srivastava A; Kokkotou E; Wessels MR
    J Biol Chem; 2006 Mar; 281(12):8216-23. PubMed ID: 16431917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification and some properties of streptococcal NAD-glycohydrolase.
    Gerlach D; Ozegowski JH; Gunther E; Vettermann S; Kohler W
    FEMS Microbiol Lett; 1996 Feb; 136(1):71-8. PubMed ID: 8919458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracellular Group A
    Nozawa T; Iibushi J; Toh H; Minowa-Nozawa A; Murase K; Aikawa C; Nakagawa I
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificity of Streptococcus pyogenes NAD(+) glycohydrolase in cytolysin-mediated translocation.
    Ghosh J; Caparon MG
    Mol Microbiol; 2006 Nov; 62(4):1203-14. PubMed ID: 17042787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial loss of CovS function in Streptococcus pyogenes causes severe invasive disease.
    Tatsuno I; Okada R; Zhang Y; Isaka M; Hasegawa T
    BMC Res Notes; 2013 Mar; 6():126. PubMed ID: 23537349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Rgg regulator of Streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon.
    Dmitriev AV; McDowell EJ; Kappeler KV; Chaussee MA; Rieck LD; Chaussee MS
    J Bacteriol; 2006 Oct; 188(20):7230-41. PubMed ID: 17015662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consequences of the variability of the CovRS and RopB regulators among Streptococcus pyogenes causing human infections.
    Friães A; Pato C; Melo-Cristino J; Ramirez M
    Sci Rep; 2015 Jul; 5():12057. PubMed ID: 26174161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of a new method for detecting streptococcal nicotinamide adenine dinucleotide glycohydrolase to various M types of Streptoccus pyogenes.
    Lütticken R; Lütticken D; Johnson DR; Wannamaker LW
    J Clin Microbiol; 1976 May; 3(5):533-6. PubMed ID: 180049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterization of NADase-streptolysin O operon of hemolytic streptococci.
    Kimoto H; Fujii Y; Yokota Y; Taketo A
    Biochim Biophys Acta; 2005 Jan; 1681(2-3):134-49. PubMed ID: 15627505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Secreted Virulence Factor NADase of Group A
    Westerlund E; Valfridsson C; Yi DX; Persson JJ
    Front Immunol; 2019; 10():1385. PubMed ID: 31275321
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    McIndoo ER; Price E; Lamb CL; Dayton CS; Bayer CR; Stevens DL; Bryant AE; Hobdey SE
    Microorganisms; 2022 Jul; 10(7):. PubMed ID: 35889195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intergenic Variable-Number Tandem-Repeat Polymorphism Upstream of rocA Alters Toxin Production and Enhances Virulence in Streptococcus pyogenes.
    Zhu L; Olsen RJ; Horstmann N; Shelburne SA; Fan J; Hu Y; Musser JM
    Infect Immun; 2016 Jul; 84(7):2086-2093. PubMed ID: 27141081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on streptococcal NAD-glycohydrolase. Copurification of streptodornase A.
    Gerlach D; Ozegowski JH; Günther E; Vettermann S; Köhler W
    Adv Exp Med Biol; 1997; 418():601-3. PubMed ID: 9331723
    [No Abstract]   [Full Text] [Related]  

  • 37. Evolutionary origin and emergence of a highly successful clone of serotype M1 group a Streptococcus involved multiple horizontal gene transfer events.
    Sumby P; Porcella SF; Madrigal AG; Barbian KD; Virtaneva K; Ricklefs SM; Sturdevant DE; Graham MR; Vuopio-Varkila J; Hoe NP; Musser JM
    J Infect Dis; 2005 Sep; 192(5):771-82. PubMed ID: 16088826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clindamycin-induced CovS-mediated regulation of the production of virulent exoproteins streptolysin O, NAD glycohydrolase, and streptokinase in Streptococcus pyogenes.
    Minami M; Kamimura T; Isaka M; Tatsuno I; Ohta M; Hasegawa T
    Antimicrob Agents Chemother; 2010 Jan; 54(1):98-102. PubMed ID: 19805566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationships between emm and multilocus sequence types within a global collection of Streptococcus pyogenes.
    Bessen DE; McGregor KF; Whatmore AM
    BMC Microbiol; 2008 Apr; 8():59. PubMed ID: 18405369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NAD-glycohydrolase production and speA and speC distribution in Group A streptococcus (GAS) isolates do not correlate with severe GAS diseases in the Australian population.
    DelVecchio A; Maley M; Currie BJ; Sriprakash KS
    J Clin Microbiol; 2002 Jul; 40(7):2642-4. PubMed ID: 12089296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.